Suppr超能文献

保守的 forkhead 二聚化基序控制着. 中的 DNA 复制时间和染色体的空间组织。

Conserved forkhead dimerization motif controls DNA replication timing and spatial organization of chromosomes in .

机构信息

Molecular and Computational Biology Program, University of Southern California, Los Angeles, CA 90089-2910.

Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1098 XH, The Netherlands.

出版信息

Proc Natl Acad Sci U S A. 2017 Mar 21;114(12):E2411-E2419. doi: 10.1073/pnas.1612422114. Epub 2017 Mar 6.

Abstract

Forkhead Box (Fox) proteins share the Forkhead domain, a winged-helix DNA binding module, which is conserved among eukaryotes from yeast to humans. These sequence-specific DNA binding proteins have been primarily characterized as transcription factors regulating diverse cellular processes from cell cycle control to developmental fate, deregulation of which contributes to developmental defects, cancer, and aging. We recently identified Forkhead 1 (Fkh1) and Forkhead 2 (Fkh2) as required for the clustering of a subset of replication origins in G phase and for the early initiation of these origins in the ensuing S phase, suggesting a mechanistic role linking the spatial organization of the origins and their activity. Here, we show that Fkh1 and Fkh2 share a unique structural feature of human FoxP proteins that enables FoxP2 and FoxP3 to form domain-swapped dimers capable of bridging two DNA molecules in vitro. Accordingly, Fkh1 self-associates in vitro and in vivo in a manner dependent on the conserved domain-swapping region, strongly suggestive of homodimer formation. Fkh1- and Fkh2-domain-swap-minus (dsm) mutations are functional as transcription factors yet are defective in replication origin timing control. Fkh1-dsm binds replication origins in vivo but fails to cluster them, supporting the conclusion that Fkh1 and Fkh2 dimers perform a structural role in the spatial organization of chromosomal elements with functional importance.

摘要

叉头框(Fox)蛋白共享叉头结构域,这是一种具有翼状螺旋的 DNA 结合模块,在从酵母到人类的真核生物中都保守存在。这些序列特异性的 DNA 结合蛋白主要被表征为转录因子,可调节从细胞周期控制到发育命运的各种细胞过程,其失调会导致发育缺陷、癌症和衰老。我们最近发现叉头框蛋白 1(Fkh1)和叉头框蛋白 2(Fkh2)对于 G 期复制起点亚群的聚类以及随后 S 期这些起点的早期起始是必需的,这表明了一种将起源的空间组织与其活性联系起来的机制作用。在这里,我们表明 Fkh1 和 Fkh2 共享人类 FoxP 蛋白的独特结构特征,使 FoxP2 和 FoxP3 能够形成能够在体外桥接两个 DNA 分子的结构域交换二聚体。因此,Fkh1 以依赖于保守的结构域交换区域的方式在体外和体内自缔合,强烈提示同源二聚体的形成。Fkh1 和 Fkh2 结构域交换缺失(dsm)突变是功能性转录因子,但在复制起点时间控制方面存在缺陷。Fkh1-dsm 在体内结合复制起点,但不能将其聚类,这支持了 Fkh1 和 Fkh2 二聚体在具有功能重要性的染色体元件的空间组织中发挥结构作用的结论。

相似文献

1
Conserved forkhead dimerization motif controls DNA replication timing and spatial organization of chromosomes in .
Proc Natl Acad Sci U S A. 2017 Mar 21;114(12):E2411-E2419. doi: 10.1073/pnas.1612422114. Epub 2017 Mar 6.
2
The budding yeast Fkh1 Forkhead associated (FHA) domain promotes a G1-chromatin state and the activity of chromosomal DNA replication origins.
PLoS Genet. 2024 Aug 5;20(8):e1011366. doi: 10.1371/journal.pgen.1011366. eCollection 2024 Aug.
3
Fkh1 and Fkh2 bind multiple chromosomal elements in the S. cerevisiae genome with distinct specificities and cell cycle dynamics.
PLoS One. 2014 Feb 4;9(2):e87647. doi: 10.1371/journal.pone.0087647. eCollection 2014.
5
Forkhead transcription factors establish origin timing and long-range clustering in S. cerevisiae.
Cell. 2012 Jan 20;148(1-2):99-111. doi: 10.1016/j.cell.2011.12.012.
6
8
Interactions between Fkh1 monomers stabilize its binding to DNA replication origins.
J Biol Chem. 2023 Aug;299(8):105026. doi: 10.1016/j.jbc.2023.105026. Epub 2023 Jul 7.

引用本文的文献

1
Replication program of a single-chromosome budding yeast strain.
Nucleic Acids Res. 2025 Aug 11;53(15). doi: 10.1093/nar/gkaf754.
3
Transcription can be sufficient, but is not necessary, to advance replication timing.
bioRxiv. 2025 Feb 5:2025.02.04.636516. doi: 10.1101/2025.02.04.636516.
4
The budding yeast Fkh1 Forkhead associated (FHA) domain promotes a G1-chromatin state and the activity of chromosomal DNA replication origins.
PLoS Genet. 2024 Aug 5;20(8):e1011366. doi: 10.1371/journal.pgen.1011366. eCollection 2024 Aug.
6
Where and when to start: Regulating DNA replication origin activity in eukaryotic genomes.
Nucleus. 2023 Dec;14(1):2229642. doi: 10.1080/19491034.2023.2229642.
7
Broadly Applicable Control Approaches Improve Accuracy of ChIP-Seq Data.
Int J Mol Sci. 2023 May 25;24(11):9271. doi: 10.3390/ijms24119271.
8
Replication timing and transcriptional control: beyond cause and effect - part IV.
Curr Opin Genet Dev. 2023 Apr;79:102031. doi: 10.1016/j.gde.2023.102031. Epub 2023 Mar 9.
9
Dbf4 Zn-Finger Motif Is Specifically Required for Stimulation of Ctf19-Activated Origins in .
Genes (Basel). 2022 Nov 24;13(12):2202. doi: 10.3390/genes13122202.
10
Rpd3 regulates single-copy origins independently of the rDNA array by opposing Fkh1-mediated origin stimulation.
Proc Natl Acad Sci U S A. 2022 Oct 4;119(40):e2212134119. doi: 10.1073/pnas.2212134119. Epub 2022 Sep 26.

本文引用的文献

2
ChIP-Seq to Analyze the Binding of Replication Proteins to Chromatin.
Methods Mol Biol. 2015;1300:155-68. doi: 10.1007/978-1-4939-2596-4_11.
3
DNA binding by FOXP3 domain-swapped dimer suggests mechanisms of long-range chromosomal interactions.
Nucleic Acids Res. 2015 Jan;43(2):1268-82. doi: 10.1093/nar/gku1373. Epub 2015 Jan 7.
4
Fkh1 and Fkh2 bind multiple chromosomal elements in the S. cerevisiae genome with distinct specificities and cell cycle dynamics.
PLoS One. 2014 Feb 4;9(2):e87647. doi: 10.1371/journal.pone.0087647. eCollection 2014.
5
Fkh1 and Fkh2 associate with Sir2 to control CLB2 transcription under normal and oxidative stress conditions.
Front Physiol. 2013 Jul 12;4:173. doi: 10.3389/fphys.2013.00173. eCollection 2013.
6
DNA replication timing.
Cold Spring Harb Perspect Biol. 2013 Aug 1;5(8):a010132. doi: 10.1101/cshperspect.a010132.
7
Genome architecture: domain organization of interphase chromosomes.
Cell. 2013 Mar 14;152(6):1270-84. doi: 10.1016/j.cell.2013.02.001.
8
Functional implications of genome topology.
Nat Struct Mol Biol. 2013 Mar;20(3):290-9. doi: 10.1038/nsmb.2474.
9
Location, location, location: it's all in the timing for replication origins.
Genes Dev. 2013 Jan 15;27(2):117-28. doi: 10.1101/gad.209999.112.
10
Structure and function in the budding yeast nucleus.
Genetics. 2012 Sep;192(1):107-29. doi: 10.1534/genetics.112.140608.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验