Molecular and Computational Biology Program, University of Southern California, Los Angeles, CA 90089-2910.
Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1098 XH, The Netherlands.
Proc Natl Acad Sci U S A. 2017 Mar 21;114(12):E2411-E2419. doi: 10.1073/pnas.1612422114. Epub 2017 Mar 6.
Forkhead Box (Fox) proteins share the Forkhead domain, a winged-helix DNA binding module, which is conserved among eukaryotes from yeast to humans. These sequence-specific DNA binding proteins have been primarily characterized as transcription factors regulating diverse cellular processes from cell cycle control to developmental fate, deregulation of which contributes to developmental defects, cancer, and aging. We recently identified Forkhead 1 (Fkh1) and Forkhead 2 (Fkh2) as required for the clustering of a subset of replication origins in G phase and for the early initiation of these origins in the ensuing S phase, suggesting a mechanistic role linking the spatial organization of the origins and their activity. Here, we show that Fkh1 and Fkh2 share a unique structural feature of human FoxP proteins that enables FoxP2 and FoxP3 to form domain-swapped dimers capable of bridging two DNA molecules in vitro. Accordingly, Fkh1 self-associates in vitro and in vivo in a manner dependent on the conserved domain-swapping region, strongly suggestive of homodimer formation. Fkh1- and Fkh2-domain-swap-minus (dsm) mutations are functional as transcription factors yet are defective in replication origin timing control. Fkh1-dsm binds replication origins in vivo but fails to cluster them, supporting the conclusion that Fkh1 and Fkh2 dimers perform a structural role in the spatial organization of chromosomal elements with functional importance.
叉头框(Fox)蛋白共享叉头结构域,这是一种具有翼状螺旋的 DNA 结合模块,在从酵母到人类的真核生物中都保守存在。这些序列特异性的 DNA 结合蛋白主要被表征为转录因子,可调节从细胞周期控制到发育命运的各种细胞过程,其失调会导致发育缺陷、癌症和衰老。我们最近发现叉头框蛋白 1(Fkh1)和叉头框蛋白 2(Fkh2)对于 G 期复制起点亚群的聚类以及随后 S 期这些起点的早期起始是必需的,这表明了一种将起源的空间组织与其活性联系起来的机制作用。在这里,我们表明 Fkh1 和 Fkh2 共享人类 FoxP 蛋白的独特结构特征,使 FoxP2 和 FoxP3 能够形成能够在体外桥接两个 DNA 分子的结构域交换二聚体。因此,Fkh1 以依赖于保守的结构域交换区域的方式在体外和体内自缔合,强烈提示同源二聚体的形成。Fkh1 和 Fkh2 结构域交换缺失(dsm)突变是功能性转录因子,但在复制起点时间控制方面存在缺陷。Fkh1-dsm 在体内结合复制起点,但不能将其聚类,这支持了 Fkh1 和 Fkh2 二聚体在具有功能重要性的染色体元件的空间组织中发挥结构作用的结论。