Suppr超能文献

整合性微小RNA网络分析揭示的超级增强子介导的RNA加工

Super-Enhancer-Mediated RNA Processing Revealed by Integrative MicroRNA Network Analysis.

作者信息

Suzuki Hiroshi I, Young Richard A, Sharp Phillip A

机构信息

David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

出版信息

Cell. 2017 Mar 9;168(6):1000-1014.e15. doi: 10.1016/j.cell.2017.02.015.

Abstract

Super-enhancers are an emerging subclass of regulatory regions controlling cell identity and disease genes. However, their biological function and impact on miRNA networks are unclear. Here, we report that super-enhancers drive the biogenesis of master miRNAs crucial for cell identity by enhancing both transcription and Drosha/DGCR8-mediated primary miRNA (pri-miRNA) processing. Super-enhancers, together with broad H3K4me3 domains, shape a tissue-specific and evolutionarily conserved atlas of miRNA expression and function. CRISPR/Cas9 genomics revealed that super-enhancer constituents act cooperatively and facilitate Drosha/DGCR8 recruitment and pri-miRNA processing to boost cell-specific miRNA production. The BET-bromodomain inhibitor JQ1 preferentially inhibits super-enhancer-directed cotranscriptional pri-miRNA processing. Furthermore, super-enhancers are characterized by pervasive interaction with DGCR8/Drosha and DGCR8/Drosha-regulated mRNA stability control, suggesting unique RNA regulation at super-enhancers. Finally, super-enhancers mark multiple miRNAs associated with cancer hallmarks. This study presents principles underlying miRNA biology in health and disease and an unrecognized higher-order property of super-enhancers in RNA processing beyond transcription.

摘要

超级增强子是一类新兴的调控区域亚类,控制着细胞身份和疾病相关基因。然而,它们的生物学功能以及对miRNA网络的影响尚不清楚。在此,我们报告称,超级增强子通过增强转录以及Drosha/DGCR8介导的初级miRNA(pri-miRNA)加工过程,驱动对细胞身份至关重要的主要miRNA的生物合成。超级增强子与广泛的H3K4me3结构域共同塑造了一个组织特异性且在进化上保守的miRNA表达和功能图谱。CRISPR/Cas9基因组学研究表明,超级增强子的组成成分协同发挥作用,并促进Drosha/DGCR8的招募以及pri-miRNA的加工,从而提高细胞特异性miRNA的产生。BET-溴结构域抑制剂JQ1优先抑制超级增强子导向的共转录pri-miRNA加工过程。此外,超级增强子的特征是与DGCR8/Drosha广泛相互作用以及对DGCR8/Drosha调控的mRNA稳定性进行控制,这表明超级增强子存在独特的RNA调控机制。最后,超级增强子标记了多个与癌症特征相关的miRNA。这项研究揭示了健康和疾病状态下miRNA生物学的潜在原理,以及超级增强子在转录之外的RNA加工过程中一种未被认识的高阶特性。

相似文献

1
Super-Enhancer-Mediated RNA Processing Revealed by Integrative MicroRNA Network Analysis.
Cell. 2017 Mar 9;168(6):1000-1014.e15. doi: 10.1016/j.cell.2017.02.015.
2
Characterization of DGCR8/Pasha, the essential cofactor for Drosha in primary miRNA processing.
Nucleic Acids Res. 2006;34(16):4622-9. doi: 10.1093/nar/gkl458. Epub 2006 Sep 8.
4
Selective inhibition of tumor oncogenes by disruption of super-enhancers.
Cell. 2013 Apr 11;153(2):320-34. doi: 10.1016/j.cell.2013.03.036.
6
The core microprocessor component DiGeorge syndrome critical region 8 (DGCR8) is a nonspecific RNA-binding protein.
J Biol Chem. 2013 Sep 13;288(37):26785-99. doi: 10.1074/jbc.M112.446880. Epub 2013 Jul 26.
7
Systems and Synthetic microRNA Biology: From Biogenesis to Disease Pathogenesis.
Int J Mol Sci. 2019 Dec 24;21(1):132. doi: 10.3390/ijms21010132.
9
N6-methyladenosine marks primary microRNAs for processing.
Nature. 2015 Mar 26;519(7544):482-5. doi: 10.1038/nature14281. Epub 2015 Mar 18.
10
SRSF3 recruits DROSHA to the basal junction of primary microRNAs.
RNA. 2018 Jul;24(7):892-898. doi: 10.1261/rna.065862.118. Epub 2018 Apr 3.

引用本文的文献

1
LNP-enclosed NamiRNA inhibits pancreatic cancer proliferation and migration via dual pathways.
J Nanobiotechnology. 2025 Jul 3;23(1):484. doi: 10.1186/s12951-025-03550-4.
3
Mitigation of Doxorubicin Cardiotoxicity With Synergistic miRNA Combinations Identified Using Combinatorial Genetics en masse (CombiGEM).
JACC CardioOncol. 2025 Jun;7(4):396-410. doi: 10.1016/j.jaccao.2025.03.007. Epub 2025 May 13.
4
Fine Regulation of MicroRNAs in Gene Regulatory Networks and Pathophysiology.
Int J Mol Sci. 2025 Mar 21;26(7):2861. doi: 10.3390/ijms26072861.
6
DGCR8 haploinsufficiency leads to primate-specific RNA dysregulation and pluripotency defects.
Nucleic Acids Res. 2025 Mar 20;53(6). doi: 10.1093/nar/gkaf197.
7
Application Strategies of Super-Enhancer RNA in Cardiovascular Diseases.
Biomedicines. 2025 Jan 7;13(1):117. doi: 10.3390/biomedicines13010117.
9
The neuroinflammatory role of microRNAs in Alzheimer's disease: pathological insights to therapeutic potential.
Mol Cell Biochem. 2025 May;480(5):2689-2706. doi: 10.1007/s11010-024-05164-0. Epub 2024 Nov 20.

本文引用的文献

1
HP1BP3, a Chromatin Retention Factor for Co-transcriptional MicroRNA Processing.
Mol Cell. 2016 Aug 4;63(3):420-32. doi: 10.1016/j.molcel.2016.06.014. Epub 2016 Jul 14.
2
Hierarchy within the mammary STAT5-driven Wap super-enhancer.
Nat Genet. 2016 Aug;48(8):904-911. doi: 10.1038/ng.3606. Epub 2016 Jul 4.
3
Genetic dissection of the α-globin super-enhancer in vivo.
Nat Genet. 2016 Aug;48(8):895-903. doi: 10.1038/ng.3605. Epub 2016 Jul 4.
4
Genome-wide nucleosome specificity and function of chromatin remodellers in ES cells.
Nature. 2016 Feb 4;530(7588):113-6. doi: 10.1038/nature16505. Epub 2016 Jan 27.
5
Structure of Human DROSHA.
Cell. 2016 Jan 14;164(1-2):81-90. doi: 10.1016/j.cell.2015.12.019. Epub 2015 Dec 31.
6
DGCR8 Acts as an Adaptor for the Exosome Complex to Degrade Double-Stranded Structured RNAs.
Mol Cell. 2015 Dec 17;60(6):873-85. doi: 10.1016/j.molcel.2015.11.011. Epub 2015 Dec 10.
7
miRTarBase 2016: updates to the experimentally validated miRNA-target interactions database.
Nucleic Acids Res. 2016 Jan 4;44(D1):D239-47. doi: 10.1093/nar/gkv1258. Epub 2015 Nov 20.
8
HNRNPA2B1 Is a Mediator of m(6)A-Dependent Nuclear RNA Processing Events.
Cell. 2015 Sep 10;162(6):1299-308. doi: 10.1016/j.cell.2015.08.011. Epub 2015 Aug 27.
10
Mammalian NET-Seq Reveals Genome-wide Nascent Transcription Coupled to RNA Processing.
Cell. 2015 Apr 23;161(3):526-540. doi: 10.1016/j.cell.2015.03.027.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验