Suppr超能文献

细菌的蛋白质稳态有效地平衡了能量和伴侣蛋白的利用。

Bacterial proteostasis balances energy and chaperone utilization efficiently.

机构信息

Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794.

Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794;

出版信息

Proc Natl Acad Sci U S A. 2017 Mar 28;114(13):E2654-E2661. doi: 10.1073/pnas.1620646114. Epub 2017 Mar 14.

Abstract

Chaperones are protein complexes that help to fold and disaggregate a cell's proteins. It is not understood how four major chaperone systems of work together in proteostasis: the recognition, sorting, folding, and disaggregating of the cell's many different proteins. Here, we model this machine. We combine extensive data on chaperoning, folding, and aggregation rates with expression levels of proteins and chaperones measured at different growth rates. We find that the proteostasis machine recognizes and sorts a client protein based on two biophysical properties of the client's misfolded state (M state): its stability and its kinetic accessibility from its unfolded state (U state). The machine is energy-efficient (the sickest proteins use the most ATP-expensive chaperones), comprehensive (it can handle any type of protein), and economical (the chaperone concentrations are just high enough to keep the whole proteome folded and disaggregated but no higher). The cell needs higher chaperone levels in two situations: fast growth (when protein production rates are high) and very slow growth (to mitigate the effects of protein degradation). This type of model complements experimental knowledge by showing how the various chaperones work together to achieve the broad folding and disaggregation needs of the cell.

摘要

伴侣蛋白是帮助折叠和解聚细胞蛋白质的蛋白复合物。目前尚不清楚四个主要伴侣蛋白系统如何协同作用以维持蛋白质稳态:即细胞内多种不同蛋白质的识别、分拣、折叠和解聚。在这里,我们构建了这个机器模型。我们将伴侣蛋白对蛋白质的折叠和聚集的调控作用,以及在不同生长速率下测量到的蛋白质和伴侣蛋白的表达水平等广泛数据结合起来。我们发现,蛋白质稳态机器基于客户蛋白质错误折叠状态(M 态)的两个生物物理特性来识别和分拣客户蛋白质:其稳定性和从未折叠状态(U 态)的动力学可及性。该机器具有高效节能(病态蛋白质使用最昂贵的 ATP 依赖性伴侣蛋白)、全面(可以处理任何类型的蛋白质)和经济(伴侣蛋白浓度仅需高到足以保持整个蛋白质组的折叠和解聚状态,但不会更高)的特点。细胞在两种情况下需要更高的伴侣蛋白水平:快速生长(当蛋白质产生速率较高时)和非常缓慢的生长(以减轻蛋白质降解的影响)。这种类型的模型通过展示各种伴侣蛋白如何协同工作以满足细胞广泛的折叠和解聚需求,补充了实验知识。

相似文献

1
Bacterial proteostasis balances energy and chaperone utilization efficiently.
Proc Natl Acad Sci U S A. 2017 Mar 28;114(13):E2654-E2661. doi: 10.1073/pnas.1620646114. Epub 2017 Mar 14.
2
How Do Chaperones Protect a Cell's Proteins from Oxidative Damage?
Cell Syst. 2018 Jun 27;6(6):743-751.e3. doi: 10.1016/j.cels.2018.05.001. Epub 2018 Jun 6.
3
Molecular chaperone functions in protein folding and proteostasis.
Annu Rev Biochem. 2013;82:323-55. doi: 10.1146/annurev-biochem-060208-092442.
4
Proteostasis is adaptive: Balancing chaperone holdases against foldases.
PLoS Comput Biol. 2020 Dec 14;16(12):e1008460. doi: 10.1371/journal.pcbi.1008460. eCollection 2020 Dec.
5
Quantifying chaperone-mediated transitions in the proteostasis network of E. coli.
PLoS Comput Biol. 2013;9(11):e1003324. doi: 10.1371/journal.pcbi.1003324. Epub 2013 Nov 14.
7
Cumulative impact of chaperone-mediated folding on genome evolution.
Biochemistry. 2012 Dec 18;51(50):9941-53. doi: 10.1021/bi3013643. Epub 2012 Dec 10.
9
The Proteome Folding Problem and Cellular Proteostasis.
J Mol Biol. 2021 Oct 1;433(20):167197. doi: 10.1016/j.jmb.2021.167197. Epub 2021 Aug 13.
10
Individual and collective contributions of chaperoning and degradation to protein homeostasis in E. coli.
Cell Rep. 2015 Apr 14;11(2):321-33. doi: 10.1016/j.celrep.2015.03.018. Epub 2015 Apr 2.

引用本文的文献

3
Aromatic amino acid metabolism and active transport regulation are implicated in microbial persistence in fractured shale reservoirs.
ISME Commun. 2024 Nov 26;4(1):ycae149. doi: 10.1093/ismeco/ycae149. eCollection 2024 Jan.
4
Comparative genomics of the proteostasis network in extreme acidophiles.
PLoS One. 2023 Sep 8;18(9):e0291164. doi: 10.1371/journal.pone.0291164. eCollection 2023.
6
Damage dynamics and the role of chance in the timing of E. coli cell death.
Nat Commun. 2023 Apr 18;14(1):2209. doi: 10.1038/s41467-023-37930-x.
8
A proteome-wide map of chaperone-assisted protein refolding in a cytosol-like milieu.
Proc Natl Acad Sci U S A. 2022 Nov 29;119(48):e2210536119. doi: 10.1073/pnas.2210536119. Epub 2022 Nov 23.
9
Survival of 11168H in Provides Mechanistic Insight into Host Pathogen Interactions.
Microorganisms. 2022 Sep 23;10(10):1894. doi: 10.3390/microorganisms10101894.
10
The biogenesis of β-lactamase enzymes.
Microbiology (Reading). 2022 Aug;168(8). doi: 10.1099/mic.0.001217.

本文引用的文献

1
Individual and collective contributions of chaperoning and degradation to protein homeostasis in E. coli.
Cell Rep. 2015 Apr 14;11(2):321-33. doi: 10.1016/j.celrep.2015.03.018. Epub 2015 Apr 2.
2
The biology of proteostasis in aging and disease.
Annu Rev Biochem. 2015;84:435-64. doi: 10.1146/annurev-biochem-060614-033955. Epub 2015 Mar 12.
3
Action of the Hsp70 chaperone system observed with single proteins.
Nat Commun. 2015 Feb 17;6:6307. doi: 10.1038/ncomms7307.
5
Quantifying chaperone-mediated transitions in the proteostasis network of E. coli.
PLoS Comput Biol. 2013;9(11):e1003324. doi: 10.1371/journal.pcbi.1003324. Epub 2013 Nov 14.
7
DnaK functions as a central hub in the E. coli chaperone network.
Cell Rep. 2012 Mar 29;1(3):251-64. doi: 10.1016/j.celrep.2011.12.007. Epub 2012 Mar 8.
8
PaxDb, a database of protein abundance averages across all three domains of life.
Mol Cell Proteomics. 2012 Aug;11(8):492-500. doi: 10.1074/mcp.O111.014704. Epub 2012 Apr 24.
9
FoldEco: a model for proteostasis in E. coli.
Cell Rep. 2012 Mar 29;1(3):265-76. doi: 10.1016/j.celrep.2012.02.011.
10
Computing protein stabilities from their chain lengths.
Proc Natl Acad Sci U S A. 2009 Jun 30;106(26):10649-54. doi: 10.1073/pnas.0903995106. Epub 2009 Jun 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验