Suppr超能文献

整合计算机模拟方法与计算系统生物学以探索内分泌干扰化学物与核激素受体的结合。

Integration of in silico methods and computational systems biology to explore endocrine-disrupting chemical binding with nuclear hormone receptors.

作者信息

Ruiz P, Sack A, Wampole M, Bobst S, Vracko M

机构信息

Computational Toxicology and Methods Development Laboratory, Division of Toxicology and Human Health Sciences, Agency for Toxic Substances and Disease Registry, Atlanta, GA, USA.

Computational Toxicology and Methods Development Laboratory, Division of Toxicology and Human Health Sciences, Agency for Toxic Substances and Disease Registry, Atlanta, GA, USA.

出版信息

Chemosphere. 2017 Jul;178:99-109. doi: 10.1016/j.chemosphere.2017.03.026. Epub 2017 Mar 9.

Abstract

Thousands of potential endocrine-disrupting chemicals present difficult regulatory challenges. Endocrine-disrupting chemicals can interfere with several nuclear hormone receptors associated with a variety of adverse health effects. The U.S. Environmental Protection Agency (U.S. EPA) has released its reviews of Tier 1 screening assay results for a set of pesticides in the Endocrine Disruptor Screening Program (EDSP), and recently, the Collaborative Estrogen Receptor Activity Prediction Project (CERAPP) data. In this study, the predictive ability of QSAR and docking approaches is evaluated using these data sets. This study also presents a computational systems biology approach using carbaryl (1-naphthyl methylcarbamate) as a case study. For estrogen receptor and androgen receptor binding predictions, two commercial and two open source QSAR tools were used, as was the publicly available docking tool Endocrine Disruptome. For estrogen receptor binding predictions, the ADMET Predictor, VEGA, and OCHEM models (specificity: 0.88, 0.88, and 0.86, and accuracy: 0.81, 0.84, and 0.88, respectively) were each more reliable than the MetaDrug™ model (specificity 0.81 and accuracy 0.77). For androgen receptor binding predictions, the Endocrine Disruptome and ADMET Predictor models (specificity: 0.94 and 0.8, and accuracy: 0.78 and 0.71, respectively) were more reliable than the MetaDrug™ model (specificity 0.33 and accuracy 0.4). A consensus approach is proposed that reaches general agreement among the models (specificity 0.94 and accuracy 0.89). This study integrates QSAR, docking, and systems biology approaches as a virtual screening tool for use in risk assessment. As such, this systems biology pathways and network analysis approach provides a means to more critically assess the potential effects of endocrine-disrupting chemicals.

摘要

数千种潜在的内分泌干扰化学物质带来了艰巨的监管挑战。内分泌干扰化学物质可干扰多种与各种不良健康影响相关的核激素受体。美国环境保护局(U.S. EPA)已发布其对内分泌干扰物筛选计划(EDSP)中一组农药以及近期协作雌激素受体活性预测项目(CERAPP)数据的一级筛选试验结果的审查。在本研究中,使用这些数据集评估了定量构效关系(QSAR)和对接方法的预测能力。本研究还以西维因(1 - 萘基甲基氨基甲酸酯)为例,提出了一种计算系统生物学方法。对于雌激素受体和雄激素受体结合预测,使用了两种商业和两种开源的QSAR工具,以及公开可用的对接工具Endocrine Disruptome。对于雌激素受体结合预测,ADMET Predictor、VEGA和OCHEM模型(特异性分别为0.88、0.88和0.86,准确性分别为0.81、0.84和0.88)各自比MetaDrug™模型(特异性0.81,准确性0.77)更可靠。对于雄激素受体结合预测,Endocrine Disruptome和ADMET Predictor模型(特异性分别为0.94和0.8,准确性分别为0.78和0.71)比MetaDrug™模型(特异性0.33,准确性0.4)更可靠。提出了一种共识方法,该方法在模型之间达成了普遍共识(特异性0.94,准确性0.89)。本研究将QSAR、对接和系统生物学方法整合为一种用于风险评估的虚拟筛选工具。因此,这种系统生物学途径和网络分析方法提供了一种手段,可更严格地评估内分泌干扰化学物质的潜在影响。

相似文献

2
Development, validation and integration of in silico models to identify androgen active chemicals.
Chemosphere. 2019 Apr;220:204-215. doi: 10.1016/j.chemosphere.2018.12.131. Epub 2018 Dec 19.
3
Identification of putative estrogen receptor-mediated endocrine disrupting chemicals using QSAR- and structure-based virtual screening approaches.
Toxicol Appl Pharmacol. 2013 Oct 1;272(1):67-76. doi: 10.1016/j.taap.2013.04.032. Epub 2013 May 23.
4
CERAPP: Collaborative Estrogen Receptor Activity Prediction Project.
Environ Health Perspect. 2016 Jul;124(7):1023-33. doi: 10.1289/ehp.1510267. Epub 2016 Feb 23.
5
CoMPARA: Collaborative Modeling Project for Androgen Receptor Activity.
Environ Health Perspect. 2020 Feb;128(2):27002. doi: 10.1289/EHP5580. Epub 2020 Feb 7.
6
Key learnings from performance of the U.S. EPA Endocrine Disruptor Screening Program (EDSP) Tier 1 in vitro assays.
Birth Defects Res B Dev Reprod Toxicol. 2014 Feb;101(1):23-42. doi: 10.1002/bdrb.21094. Epub 2014 Feb 10.
8
Computational models to predict endocrine-disrupting chemical binding with androgen or oestrogen receptors.
Ecotoxicol Environ Saf. 2014 Dec;110:280-7. doi: 10.1016/j.ecoenv.2014.08.026. Epub 2014 Oct 3.

引用本文的文献

1
Computer-Aided Ligand Discovery for Estrogen Receptor Alpha.
Int J Mol Sci. 2020 Jun 12;21(12):4193. doi: 10.3390/ijms21124193.
2
In silico prediction of toxicity and its applications for chemicals at work.
Toxicol Environ Health Sci. 2020;12(3):191-202. doi: 10.1007/s13530-020-00056-4. Epub 2020 May 14.
4
Consensus versus Individual QSARs in Classification: Comparison on a Large-Scale Case Study.
J Chem Inf Model. 2020 Mar 23;60(3):1215-1223. doi: 10.1021/acs.jcim.9b01057. Epub 2020 Mar 2.
5
Advancing Computational Toxicology in the Big Data Era by Artificial Intelligence: Data-Driven and Mechanism-Driven Modeling for Chemical Toxicity.
Chem Res Toxicol. 2019 Apr 15;32(4):536-547. doi: 10.1021/acs.chemrestox.8b00393. Epub 2019 Mar 25.
6
Development, validation and integration of in silico models to identify androgen active chemicals.
Chemosphere. 2019 Apr;220:204-215. doi: 10.1016/j.chemosphere.2018.12.131. Epub 2018 Dec 19.
7
In Silico Prediction for Intestinal Absorption and Brain Penetration of Chemical Pesticides in Humans.
Int J Environ Res Public Health. 2017 Jun 30;14(7):708. doi: 10.3390/ijerph14070708.

本文引用的文献

1
CERAPP: Collaborative Estrogen Receptor Activity Prediction Project.
Environ Health Perspect. 2016 Jul;124(7):1023-33. doi: 10.1289/ehp.1510267. Epub 2016 Feb 23.
2
A Systems Biology Approach Reveals Converging Molecular Mechanisms that Link Different POPs to Common Metabolic Diseases.
Environ Health Perspect. 2016 Jul;124(7):1034-41. doi: 10.1289/ehp.1510308. Epub 2015 Dec 18.
3
3D QSAR studies of hydroxylated polychlorinated biphenyls as potential xenoestrogens.
Chemosphere. 2016 Feb;144:2238-46. doi: 10.1016/j.chemosphere.2015.11.004. Epub 2015 Nov 19.
4
Prediction of the endocrine disruption profile of pesticides.
SAR QSAR Environ Res. 2015;26(10):831-52. doi: 10.1080/1062936X.2015.1104809. Epub 2015 Nov 7.
7
Computational study of binding affinity to nuclear receptors for some cosmetic ingredients.
Chemosphere. 2015 Sep;135:325-34. doi: 10.1016/j.chemosphere.2015.04.075. Epub 2015 May 15.
8
An approach to the identification and regulation of endocrine disrupting pesticides.
Food Chem Toxicol. 2015 Apr;78:214-20. doi: 10.1016/j.fct.2015.01.011. Epub 2015 Feb 7.
9
Occupational pesticide exposure in early pregnancy associated with sex-specific neurobehavioral deficits in the children at school age.
Neurotoxicol Teratol. 2015 Jan-Feb;47:1-9. doi: 10.1016/j.ntt.2014.10.006. Epub 2014 Nov 8.
10
Computational models to predict endocrine-disrupting chemical binding with androgen or oestrogen receptors.
Ecotoxicol Environ Saf. 2014 Dec;110:280-7. doi: 10.1016/j.ecoenv.2014.08.026. Epub 2014 Oct 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验