Suppr超能文献

缺氧诱导因子-1α激活可改善早期慢性肾脏病的肾脏氧合及线粒体功能。

Hypoxia-inducible factor-1α activation improves renal oxygenation and mitochondrial function in early chronic kidney disease.

作者信息

Thomas Joanna L, Pham Hai, Li Ying, Hall Elanore, Perkins Guy A, Ali Sameh S, Patel Hemal H, Singh Prabhleen

机构信息

Department of Biomedical Engineering, School of Engineering, Mercer University, Macon, Georgia.

Division of Nephrology and Hypertension, Department of Medicine, University of California, San Diego, and VA San Diego Healthcare System, San Diego, California.

出版信息

Am J Physiol Renal Physiol. 2017 Aug 1;313(2):F282-F290. doi: 10.1152/ajprenal.00579.2016. Epub 2017 Mar 22.

Abstract

The pathophysiology of chronic kidney disease (CKD) is driven by alterations in surviving nephrons to sustain renal function with ongoing nephron loss. Oxygen supply-demand mismatch, due to hemodynamic adaptations, with resultant hypoxia, plays an important role in the pathophysiology in early CKD. We sought to investigate the underlying mechanisms of this mismatch. We utilized the subtotal nephrectomy (STN) model of CKD to investigate the alterations in renal oxygenation linked to sodium (Na) transport and mitochondrial function in the surviving nephrons. Oxygen delivery was significantly reduced in STN kidneys because of lower renal blood flow. Fractional oxygen extraction was significantly higher in STN. Tubular Na reabsorption was significantly lower per mole of oxygen consumed in STN. We hypothesized that decreased mitochondrial bioenergetic capacity may account for this and uncovered significant mitochondrial dysfunction in the early STN kidney: higher oxidative metabolism without an attendant increase in ATP levels, elevated superoxide levels, and alterations in mitochondrial morphology. We further investigated the effect of activation of hypoxia-inducible factor-1α (HIF-1α), a master regulator of cellular hypoxia response. We observed significant improvement in renal blood flow, glomerular filtration rate, and tubular Na reabsorption per mole of oxygen consumed with HIF-1α activation. Importantly, HIF-1α activation significantly lowered mitochondrial oxygen consumption and superoxide production and increased mitochondrial volume density. In conclusion, we report significant impairment of renal oxygenation and mitochondrial function at the early stages of CKD and demonstrate the beneficial role of HIF-1α activation on renal function and metabolism.

摘要

慢性肾脏病(CKD)的病理生理学是由存活肾单位的改变驱动的,以在肾单位持续丢失的情况下维持肾功能。由于血流动力学适应导致的氧供需不匹配及由此产生的缺氧,在早期CKD的病理生理学中起重要作用。我们试图研究这种不匹配的潜在机制。我们利用CKD的次全肾切除术(STN)模型来研究存活肾单位中与钠(Na)转运和线粒体功能相关的肾氧合变化。由于肾血流量降低,STN肾脏的氧输送显著减少。STN中的氧提取分数显著更高。STN中每消耗一摩尔氧的肾小管钠重吸收显著更低。我们假设线粒体生物能量能力下降可能是其原因,并发现早期STN肾脏存在显著的线粒体功能障碍:氧化代谢增加但ATP水平没有相应增加、超氧化物水平升高以及线粒体形态改变。我们进一步研究了细胞缺氧反应的主要调节因子缺氧诱导因子-1α(HIF-1α)激活的影响。我们观察到HIF-1α激活后肾血流量、肾小球滤过率以及每消耗一摩尔氧的肾小管钠重吸收有显著改善。重要的是,HIF-1α激活显著降低了线粒体氧消耗和超氧化物产生,并增加了线粒体体积密度。总之,我们报告了CKD早期肾氧合和线粒体功能的显著损害,并证明了HIF-1α激活对肾功能和代谢的有益作用。

相似文献

1
Hypoxia-inducible factor-1α activation improves renal oxygenation and mitochondrial function in early chronic kidney disease.
Am J Physiol Renal Physiol. 2017 Aug 1;313(2):F282-F290. doi: 10.1152/ajprenal.00579.2016. Epub 2017 Mar 22.
2
Interactions between HIF-1α and AMPK in the regulation of cellular hypoxia adaptation in chronic kidney disease.
Am J Physiol Renal Physiol. 2015 Sep 1;309(5):F414-28. doi: 10.1152/ajprenal.00463.2014. Epub 2015 Jul 1.
3
Evaluation of Renal Blood Flow and Oxygenation in CKD Using Magnetic Resonance Imaging.
Am J Kidney Dis. 2015 Sep;66(3):402-11. doi: 10.1053/j.ajkd.2014.11.022. Epub 2015 Jan 22.
5
Role of renal oxygenation and mitochondrial function in the pathophysiology of acute kidney injury.
Nephron Clin Pract. 2014;127(1-4):149-52. doi: 10.1159/000363545. Epub 2014 Sep 24.
6
Oxygen transport and mitochondrial function in porcine septic shock, cardiogenic shock, and hypoxaemia.
Acta Anaesthesiol Scand. 2012 Aug;56(7):846-59. doi: 10.1111/j.1399-6576.2012.02706.x. Epub 2012 May 9.
7
Pathophysiology of unilateral ischemia-reperfusion injury: importance of renal counterbalance and implications for the AKI-CKD transition.
Am J Physiol Renal Physiol. 2020 May 1;318(5):F1086-F1099. doi: 10.1152/ajprenal.00590.2019. Epub 2020 Mar 16.
8
FIH-1-modulated HIF-1α C-TAD promotes acute kidney injury to chronic kidney disease progression via regulating KLF5 signaling.
Acta Pharmacol Sin. 2021 Dec;42(12):2106-2119. doi: 10.1038/s41401-021-00617-4. Epub 2021 Mar 3.
9
Silencing of hypoxia-inducible factor-1α gene attenuates chronic ischemic renal injury in two-kidney, one-clip rats.
Am J Physiol Renal Physiol. 2014 May 15;306(10):F1236-42. doi: 10.1152/ajprenal.00673.2013. Epub 2014 Mar 12.

引用本文的文献

1
Triglyceride-glucose index in the prediction of acute kidney injury in patients undergoing coronary artery bypass surgery.
Front Cardiovasc Med. 2025 May 9;12:1572096. doi: 10.3389/fcvm.2025.1572096. eCollection 2025.
3
Research progress of hypoxia-inducible factor-1α and zinc in the mechanism of diabetic kidney disease.
Front Pharmacol. 2025 Feb 10;16:1537749. doi: 10.3389/fphar.2025.1537749. eCollection 2025.
6
Transcription Factor: Key Regulator in Renal Physiology and Pathogenesis.
Int J Mol Sci. 2024 Oct 2;25(19):10609. doi: 10.3390/ijms251910609.
7
HIF-1α promotes kidney organoid vascularization and applications in disease modeling.
Stem Cell Res Ther. 2023 Nov 19;14(1):336. doi: 10.1186/s13287-023-03528-9.
9
Renal Assessment in Acute Cardiorenal Syndrome.
Biomolecules. 2023 Jan 27;13(2):239. doi: 10.3390/biom13020239.
10
Evolving Strategies in the Treatment of Anaemia in Chronic Kidney Disease: The HIF-Prolyl Hydroxylase Inhibitors.
Drugs. 2022 Nov;82(16):1565-1589. doi: 10.1007/s40265-022-01783-3. Epub 2022 Nov 9.

本文引用的文献

2
Urinary mitochondrial DNA is a biomarker of mitochondrial disruption and renal dysfunction in acute kidney injury.
Kidney Int. 2015 Dec;88(6):1336-1344. doi: 10.1038/ki.2015.240. Epub 2015 Aug 19.
3
Interactions between HIF-1α and AMPK in the regulation of cellular hypoxia adaptation in chronic kidney disease.
Am J Physiol Renal Physiol. 2015 Sep 1;309(5):F414-28. doi: 10.1152/ajprenal.00463.2014. Epub 2015 Jul 1.
4
Urinary ATP Synthase Subunit β Is a Novel Biomarker of Renal Mitochondrial Dysfunction in Acute Kidney Injury.
Toxicol Sci. 2015 May;145(1):108-17. doi: 10.1093/toxsci/kfv038. Epub 2015 Feb 9.
5
Intravenous (-)-epicatechin reduces myocardial ischemic injury by protecting mitochondrial function.
Int J Cardiol. 2014 Aug 1;175(2):297-306. doi: 10.1016/j.ijcard.2014.05.009. Epub 2014 May 15.
6
Formoterol restores mitochondrial and renal function after ischemia-reperfusion injury.
J Am Soc Nephrol. 2014 Jun;25(6):1157-62. doi: 10.1681/ASN.2013090952. Epub 2014 Feb 7.
7
8
Basal renal O2 consumption and the efficiency of O2 utilization for Na+ reabsorption.
Am J Physiol Renal Physiol. 2014 Mar 1;306(5):F551-60. doi: 10.1152/ajprenal.00473.2013. Epub 2014 Jan 15.
9
Mitochondrial dynamics--mitochondrial fission and fusion in human diseases.
N Engl J Med. 2013 Dec 5;369(23):2236-51. doi: 10.1056/NEJMra1215233.
10
Salt sensitivity of tubuloglomerular feedback in the early remnant kidney.
Am J Physiol Renal Physiol. 2014 Jan;306(2):F172-80. doi: 10.1152/ajprenal.00431.2013. Epub 2013 Nov 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验