Thomas Joanna L, Pham Hai, Li Ying, Hall Elanore, Perkins Guy A, Ali Sameh S, Patel Hemal H, Singh Prabhleen
Department of Biomedical Engineering, School of Engineering, Mercer University, Macon, Georgia.
Division of Nephrology and Hypertension, Department of Medicine, University of California, San Diego, and VA San Diego Healthcare System, San Diego, California.
Am J Physiol Renal Physiol. 2017 Aug 1;313(2):F282-F290. doi: 10.1152/ajprenal.00579.2016. Epub 2017 Mar 22.
The pathophysiology of chronic kidney disease (CKD) is driven by alterations in surviving nephrons to sustain renal function with ongoing nephron loss. Oxygen supply-demand mismatch, due to hemodynamic adaptations, with resultant hypoxia, plays an important role in the pathophysiology in early CKD. We sought to investigate the underlying mechanisms of this mismatch. We utilized the subtotal nephrectomy (STN) model of CKD to investigate the alterations in renal oxygenation linked to sodium (Na) transport and mitochondrial function in the surviving nephrons. Oxygen delivery was significantly reduced in STN kidneys because of lower renal blood flow. Fractional oxygen extraction was significantly higher in STN. Tubular Na reabsorption was significantly lower per mole of oxygen consumed in STN. We hypothesized that decreased mitochondrial bioenergetic capacity may account for this and uncovered significant mitochondrial dysfunction in the early STN kidney: higher oxidative metabolism without an attendant increase in ATP levels, elevated superoxide levels, and alterations in mitochondrial morphology. We further investigated the effect of activation of hypoxia-inducible factor-1α (HIF-1α), a master regulator of cellular hypoxia response. We observed significant improvement in renal blood flow, glomerular filtration rate, and tubular Na reabsorption per mole of oxygen consumed with HIF-1α activation. Importantly, HIF-1α activation significantly lowered mitochondrial oxygen consumption and superoxide production and increased mitochondrial volume density. In conclusion, we report significant impairment of renal oxygenation and mitochondrial function at the early stages of CKD and demonstrate the beneficial role of HIF-1α activation on renal function and metabolism.
慢性肾脏病(CKD)的病理生理学是由存活肾单位的改变驱动的,以在肾单位持续丢失的情况下维持肾功能。由于血流动力学适应导致的氧供需不匹配及由此产生的缺氧,在早期CKD的病理生理学中起重要作用。我们试图研究这种不匹配的潜在机制。我们利用CKD的次全肾切除术(STN)模型来研究存活肾单位中与钠(Na)转运和线粒体功能相关的肾氧合变化。由于肾血流量降低,STN肾脏的氧输送显著减少。STN中的氧提取分数显著更高。STN中每消耗一摩尔氧的肾小管钠重吸收显著更低。我们假设线粒体生物能量能力下降可能是其原因,并发现早期STN肾脏存在显著的线粒体功能障碍:氧化代谢增加但ATP水平没有相应增加、超氧化物水平升高以及线粒体形态改变。我们进一步研究了细胞缺氧反应的主要调节因子缺氧诱导因子-1α(HIF-1α)激活的影响。我们观察到HIF-1α激活后肾血流量、肾小球滤过率以及每消耗一摩尔氧的肾小管钠重吸收有显著改善。重要的是,HIF-1α激活显著降低了线粒体氧消耗和超氧化物产生,并增加了线粒体体积密度。总之,我们报告了CKD早期肾氧合和线粒体功能的显著损害,并证明了HIF-1α激活对肾功能和代谢的有益作用。