Suppr超能文献

系统毒理学:实际应用与机遇

Systems Toxicology: Real World Applications and Opportunities.

作者信息

Hartung Thomas, FitzGerald Rex E, Jennings Paul, Mirams Gary R, Peitsch Manuel C, Rostami-Hodjegan Amin, Shah Imran, Wilks Martin F, Sturla Shana J

机构信息

Center for Alternatives to Animal Testing (CAAT), Johns Hopkins Bloomberg School of Public Health , Baltimore, Maryland 21205, United States.

University of Konstanz, CAAT-Europe , 78457 Konstanz, Germany.

出版信息

Chem Res Toxicol. 2017 Apr 17;30(4):870-882. doi: 10.1021/acs.chemrestox.7b00003. Epub 2017 Mar 31.

Abstract

Systems Toxicology aims to change the basis of how adverse biological effects of xenobiotics are characterized from empirical end points to describing modes of action as adverse outcome pathways and perturbed networks. Toward this aim, Systems Toxicology entails the integration of in vitro and in vivo toxicity data with computational modeling. This evolving approach depends critically on data reliability and relevance, which in turn depends on the quality of experimental models and bioanalysis techniques used to generate toxicological data. Systems Toxicology involves the use of large-scale data streams ("big data"), such as those derived from omics measurements that require computational means for obtaining informative results. Thus, integrative analysis of multiple molecular measurements, particularly acquired by omics strategies, is a key approach in Systems Toxicology. In recent years, there have been significant advances centered on in vitro test systems and bioanalytical strategies, yet a frontier challenge concerns linking observed network perturbations to phenotypes, which will require understanding pathways and networks that give rise to adverse responses. This summary perspective from a 2016 Systems Toxicology meeting, an international conference held in the Alps of Switzerland, describes the limitations and opportunities of selected emerging applications in this rapidly advancing field. Systems Toxicology aims to change the basis of how adverse biological effects of xenobiotics are characterized, from empirical end points to pathways of toxicity. This requires the integration of in vitro and in vivo data with computational modeling. Test systems and bioanalytical technologies have made significant advances, but ensuring data reliability and relevance is an ongoing concern. The major challenge facing the new pathway approach is determining how to link observed network perturbations to phenotypic toxicity.

摘要

系统毒理学旨在改变对外源化学物不良生物学效应的表征基础,从经验性终点转变为将作用模式描述为不良结局途径和受干扰的网络。为实现这一目标,系统毒理学需要将体外和体内毒性数据与计算模型相结合。这种不断发展的方法严重依赖于数据的可靠性和相关性,而这又取决于用于生成毒理学数据的实验模型和生物分析技术的质量。系统毒理学涉及使用大规模数据流(“大数据”),例如源自组学测量的数据,这些数据需要计算手段来获得有价值的结果。因此,对多种分子测量进行综合分析,特别是通过组学策略获得的测量结果,是系统毒理学的关键方法。近年来,体外测试系统和生物分析策略取得了重大进展,但一个前沿挑战是将观察到的网络扰动与表型联系起来,这需要了解引发不良反应的途径和网络。这篇来自2016年系统毒理学会议(在瑞士阿尔卑斯山举行的一次国际会议)的综述观点,描述了这个快速发展领域中选定新兴应用的局限性和机遇。系统毒理学旨在改变对外源化学物不良生物学效应的表征基础,从经验性终点转变为毒性途径。这需要将体外和体内数据与计算模型相结合。测试系统和生物分析技术取得了重大进展,但确保数据的可靠性和相关性仍是一个持续关注的问题。新途径方法面临的主要挑战是确定如何将观察到的网络扰动与表型毒性联系起来。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验