Suppr超能文献

半导体光催化在选择性自由基偶联反应中的应用。

Semiconductor Photocatalysis for Chemoselective Radical Coupling Reactions.

机构信息

Institute of Inorganic Chemistry, University of Erlangen-Nürnberg , D-91058 Erlangen, Germany.

出版信息

Acc Chem Res. 2017 Apr 18;50(4):1002-1010. doi: 10.1021/acs.accounts.7b00023. Epub 2017 Apr 5.

Abstract

Photocatalysis at semiconductor surfaces is a growing field of general photocatalysis because of its importance for the chemical utilization of solar energy. By analogy with photoelectrochemistry the basic mechanism of semiconductor photocatalysis can be broken down into three steps: photogenerated formation of surface redox centers (electron-hole pairs), interfacial electron transfer from and to substrates (often coupled with proton-transfer), and conversion of primary redox intermediates into the products. Sun driven water cleavage and carbon dioxide fixation are still in the state of basic research whereas aerial degradation reactions of pollutants have reached practical application for the cleaning of air. In addition, a great variety of organic transformations (not syntheses) have been reported. They include cis-trans isomerizations, valence isomerizations, cycloaddition reactions, intramolecular or intermolecular C-N and C-C couplings, partial oxidations, and reductions. In all cases, well-known products were formed but very rarely also isolated. As compared to conventional homogeneous organic synthesis, the photocatalytic reaction mode is of no advantage, although the opposite is quite often claimed in the literature. It is also noted that a high quantum yield does not implicate a high product yield, since it is measured at very low substrate conversion in order to minimize secondary photoreactions. That is especially important in semiconductor photocatalysis since photocorrosion of the photocatalyst often prevents long-time irradiation, as is the case for colloidal metal sulfide semiconductors, which in general are photochemically too unstable to be used in synthesis. In this Account, we first classify the numerous organic photoreactions catalyzed by semiconductor powders. The classification is based on easily obtainable experimental facts, namely the nature of the light absorbing reaction component and the reaction stoichiometry. Next we discuss the problem of quantitative comparisons of photocatalytic activities or apparent quantum yields and propose a basic three-step mechanistic model. Finally, we address the question whether or not the unique photoredox properties of simple inorganic semiconductor powders may lead to previously unknown visible light induced organic syntheses. For that, we summarize novel radical C-C- and C-N- couplings photocatalyzed by self-prepared cadmium sulfide powders. Electron acceptor and donor substrates like imines or 1,2-diazenes, and cyclic olefins or unsaturated ethers, respectively, undergo a linear addition reaction. The hitherto unknown products have all been isolated in good to moderate yields and may be of pharmaceutical interest. In the first reaction step photogenerated electron-hole pairs produce through proton-coupled electron transfer the corresponding radicals. Their subsequent chemoselective heterocoupling affords the products, correlating with an insertion of the imine or 1,2-diazene into an allylic C(sp)-H bond of the donor substrate. In the absence of an imine or 1,2-diazene, cyclic allyl/enol ethers are dehydrodimerized under concomitant hydrogen evolution. Even a visible light photosulfoxidation of alkanes is catalyzed by titania. In these heterogeneous photoredox reactions the role of the semiconductor photocatalyst is multifunctional. It induces favorable substrate preorientations in the surface-solvent layer, it catalyzes proton-coupled interfacial electron transfer to and from substrates generating intermediate radicals, and it enables their subsequent chemoselective coupling in the surface-solvent interface. Different from molecular photosensitizers, which enable only one one-electron transfer with one single substrate, photoexcited semiconductors induce two concerted one-electron transfer reactions with two substrates. This is because the light generated electron-hole pairs are trapped at distinct surface sites and undergo proton-coupled interfacial electron transfers with unsaturated donor and acceptor substrates. The radicals diffuse in a solid-solute-surface layer to undergo chemo- and stereoselective C-C and C-N bond formation. Thus, the semiconductor photocatalyst functions like an artificial leaf. Since several minerals are known to have semiconductor properties, solar photocatalysis may be also relevant for prebiotic and environmental chemistry.

摘要

半导体表面的光催化是广义光催化中一个不断发展的领域,因为它对于太阳能的化学利用非常重要。通过与光电化学的类比,可以将半导体光催化的基本机制分解为三个步骤:光生成表面氧化还原中心(电子-空穴对)的形成、从底物到底物的界面电子转移(通常与质子转移耦合),以及将初级氧化还原中间体转化为产物。阳光驱动的水裂解和二氧化碳固定仍处于基础研究状态,而空气污染物的降解反应已经达到了空气净化的实际应用。此外,还报道了大量的有机转化(不是合成)。它们包括顺反异构化、价态异构化、环加成反应、分子内或分子间的 C-N 和 C-C 偶联、部分氧化和还原。在所有情况下,都形成了众所周知的产物,但很少有报道分离出产物。与传统的均相有机合成相比,光催化反应模式没有优势,尽管在文献中经常声称相反。还需要注意的是,量子产率高并不意味着产物产率高,因为它是在非常低的底物转化率下测量的,以最大限度地减少次级光反应。这在半导体光催化中尤为重要,因为光催化剂的光腐蚀通常会阻止长时间的辐照,就像胶体金属硫化物半导体一样,它们通常在光化学上太不稳定,无法用于合成。在本说明中,我们首先对半导体粉末催化的众多有机光反应进行分类。分类是基于容易获得的实验事实,即光吸收反应成分的性质和反应化学计量。接下来,我们讨论了定量比较光催化活性或表观量子产率的问题,并提出了一个基本的三步机制模型。最后,我们提出了这样一个问题,即简单无机半导体粉末的独特光氧化还原特性是否可能导致以前未知的可见光诱导的有机合成。为此,我们总结了由自制备的硫化镉粉末催化的新型自由基 C-C 和 C-N 偶联。电子受体和供体底物,如亚胺或 1,2-二氮烯,以及环状烯烃或不饱和醚,分别经历线性加成反应。迄今为止未知的产物都已被分离出来,且产率良好或中等,可能具有药物方面的意义。在第一步反应中,光生电子-空穴对通过质子耦合电子转移产生相应的自由基。它们随后的化学选择性杂偶联提供了产物,与亚胺或 1,2-二氮烯插入供体底物的烯丙基 C(sp)-H 键相关联。在没有亚胺或 1,2-二氮烯的情况下,环状烯基/烯醇醚在伴随氢析出的情况下脱氢二聚。甚至可见光光氧化烷烃也被二氧化钛催化。在这些非均相光氧化还原反应中,半导体光催化剂的作用是多方面的。它在表面-溶剂层中诱导有利的底物预取向,它催化质子耦合界面电子从底物转移到半导体催化剂上,并产生中间自由基,并且它能够在表面-溶剂界面中进行后续的化学选择性偶联。与只能进行一次单电子转移与一个单一底物的分子光敏剂不同,光激发的半导体可以诱导两个协同的单电子转移反应与两个底物。这是因为光生成的电子-空穴对被捕获在不同的表面位点上,并与不饱和的供体和受体底物发生质子耦合界面电子转移。自由基在固体-溶质-表面层中扩散,以进行化学和立体选择性的 C-C 和 C-N 键形成。因此,半导体光催化剂的作用就像一片人工叶子。由于已知有几种矿物质具有半导体特性,太阳能光催化可能也与前生物和环境化学有关。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验