Suppr超能文献

原核生物环核苷酸门控离子通道的冷冻电镜结构。

CryoEM structure of a prokaryotic cyclic nucleotide-gated ion channel.

机构信息

Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195.

Department of Biochemistry, University of Washington, Seattle, WA 98195.

出版信息

Proc Natl Acad Sci U S A. 2017 Apr 25;114(17):4430-4435. doi: 10.1073/pnas.1700248114. Epub 2017 Apr 10.

Abstract

Cyclic nucleotide-gated (CNG) and hyperpolarization-activated cyclic nucleotide-regulated (HCN) ion channels play crucial physiological roles in phototransduction, olfaction, and cardiac pace making. These channels are characterized by the presence of a carboxyl-terminal cyclic nucleotide-binding domain (CNBD) that connects to the channel pore via a C-linker domain. Although cyclic nucleotide binding has been shown to promote CNG and HCN channel opening, the precise mechanism underlying gating remains poorly understood. Here we used cryoEM to determine the structure of the intact LliK CNG channel isolated from -which shares sequence similarity to eukaryotic CNG and HCN channels-in the presence of a saturating concentration of cAMP. A short S4-S5 linker connects nearby voltage-sensing and pore domains to produce a non-domain-swapped transmembrane architecture, which appears to be a hallmark of this channel family. We also observe major conformational changes of the LliK C-linkers and CNBDs relative to the crystal structures of isolated C-linker/CNBD fragments and the cryoEM structures of related CNG, HCN, and KCNH channels. The conformation of our LliK structure may represent a functional state of this channel family not captured in previous studies.

摘要

环核苷酸门控 (CNG) 和超极化激活环核苷酸调节 (HCN) 离子通道在光转导、嗅觉和心脏起搏中发挥着至关重要的生理作用。这些通道的特征是存在羧基末端环核苷酸结合域 (CNBD),通过 C 连接子域与通道孔连接。尽管已经表明环核苷酸结合促进了 CNG 和 HCN 通道的开放,但门控的精确机制仍知之甚少。在这里,我们使用 cryoEM 来确定从 LliK CNG 通道中分离出来的完整结构,该通道与真核 CNG 和 HCN 通道具有序列相似性,在存在饱和浓度的 cAMP 的情况下。一个短的 S4-S5 接头将附近的电压感应和孔结构域连接起来,产生非结构域交换的跨膜结构,这似乎是该通道家族的标志。我们还观察到 LliK C 连接子和 CNBD 相对于分离的 C 连接子/CNBD 片段的晶体结构以及相关 CNG、HCN 和 KCNH 通道的 cryoEM 结构的主要构象变化。我们的 LliK 结构的构象可能代表了以前研究中未捕获到的该通道家族的功能状态。

相似文献

1
CryoEM structure of a prokaryotic cyclic nucleotide-gated ion channel.
Proc Natl Acad Sci U S A. 2017 Apr 25;114(17):4430-4435. doi: 10.1073/pnas.1700248114. Epub 2017 Apr 10.
2
Salt bridges and gating in the COOH-terminal region of HCN2 and CNGA1 channels.
J Gen Physiol. 2004 Dec;124(6):663-77. doi: 10.1085/jgp.200409178.
3
Structure of the SthK carboxy-terminal region reveals a gating mechanism for cyclic nucleotide-modulated ion channels.
PLoS One. 2015 Jan 27;10(1):e0116369. doi: 10.1371/journal.pone.0116369. eCollection 2015.
4
Insights into the molecular mechanism for hyperpolarization-dependent activation of HCN channels.
Proc Natl Acad Sci U S A. 2018 Aug 21;115(34):E8086-E8095. doi: 10.1073/pnas.1805596115. Epub 2018 Aug 3.
5
Resonance assignment of the ligand-free cyclic nucleotide-binding domain from the murine ion channel HCN2.
Biomol NMR Assign. 2015 Oct;9(2):243-6. doi: 10.1007/s12104-014-9583-x. Epub 2014 Oct 17.
6
Structural insights into the mechanisms of CNBD channel function.
J Gen Physiol. 2018 Feb 5;150(2):225-244. doi: 10.1085/jgp.201711898. Epub 2017 Dec 12.
8
The S4-S5 linker couples voltage sensing and activation of pacemaker channels.
Proc Natl Acad Sci U S A. 2001 Sep 25;98(20):11277-82. doi: 10.1073/pnas.201250598. Epub 2001 Sep 11.
9
The carboxyl-terminal region of cyclic nucleotide-modulated channels is a gating ring, not a permeation path.
Proc Natl Acad Sci U S A. 2005 Feb 22;102(8):2742-7. doi: 10.1073/pnas.0408323102. Epub 2005 Feb 14.

引用本文的文献

1
An Allosteric Model for Electromechanical Coupling in Cardiac CNBD Channels.
bioRxiv. 2025 Aug 1:2025.07.28.666606. doi: 10.1101/2025.07.28.666606.
2
GORK K channel structure and gating vital to informing stomatal engineering.
Nat Commun. 2025 Feb 25;16(1):1961. doi: 10.1038/s41467-025-57287-7.
3
Mapping the contribution of the C-linker domain to gating polarity in CNBD channels.
Biophys J. 2024 Jul 16;123(14):2176-2184. doi: 10.1016/j.bpj.2024.04.022. Epub 2024 Apr 27.
4
Similar Binding Modes of cGMP Analogues Limit Selectivity in Modulating Retinal CNG Channels via the Cyclic Nucleotide-Binding Domain.
ACS Chem Neurosci. 2024 Apr 17;15(8):1652-1668. doi: 10.1021/acschemneuro.3c00665. Epub 2024 Apr 5.
5
Over-Production of the Human SLC7A10 in and Functional Assay in Proteoliposomes.
Int J Mol Sci. 2023 Dec 30;25(1):536. doi: 10.3390/ijms25010536.
6
Exploring Flexibility and Folding Patterns Throughout Time in Voltage Sensors.
J Mol Evol. 2023 Dec;91(6):819-836. doi: 10.1007/s00239-023-10140-1. Epub 2023 Nov 13.
7
Structural basis of properties, mechanisms, and channelopathy of cyclic nucleotide-gated channels.
Channels (Austin). 2023 Dec;17(1):2273165. doi: 10.1080/19336950.2023.2273165. Epub 2023 Oct 31.
10
Fluorescence-Detection Size-Exclusion Chromatography-Based Thermostability Assay for Membrane Proteins.
Methods Mol Biol. 2023;2564:299-315. doi: 10.1007/978-1-0716-2667-2_16.

本文引用的文献

1
Structure of a eukaryotic cyclic-nucleotide-gated channel.
Nature. 2017 Feb 2;542(7639):60-65. doi: 10.1038/nature20819. Epub 2017 Jan 18.
2
Structures of the Human HCN1 Hyperpolarization-Activated Channel.
Cell. 2017 Jan 12;168(1-2):111-120.e11. doi: 10.1016/j.cell.2016.12.023.
5
Pore architecture of TRIC channels and insights into their gating mechanism.
Nature. 2016 Oct 27;538(7626):537-541. doi: 10.1038/nature19767. Epub 2016 Oct 3.
7
Structure of the voltage-gated K⁺ channel Eag1 reveals an alternative voltage sensing mechanism.
Science. 2016 Aug 12;353(6300):664-9. doi: 10.1126/science.aaf8070.
8
Novel cell-free high-throughput screening method for pharmacological tools targeting K+ channels.
Proc Natl Acad Sci U S A. 2016 May 17;113(20):5748-53. doi: 10.1073/pnas.1602815113. Epub 2016 Apr 18.
9
Autism-associated SHANK3 haploinsufficiency causes Ih channelopathy in human neurons.
Science. 2016 May 6;352(6286):aaf2669. doi: 10.1126/science.aaf2669. Epub 2016 Mar 10.
10
Gctf: Real-time CTF determination and correction.
J Struct Biol. 2016 Jan;193(1):1-12. doi: 10.1016/j.jsb.2015.11.003. Epub 2015 Nov 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验