Suppr超能文献

含有带电荷精氨酸的跨膜螺旋在热力学上是稳定的。

Transmembrane helices containing a charged arginine are thermodynamically stable.

作者信息

Ulmschneider Martin B, Ulmschneider Jakob P, Freites J Alfredo, von Heijne Gunnar, Tobias Douglas J, White Stephen H

机构信息

Institute for NanoBioTechnology and Department of Materials Science, Johns Hopkins University, Baltimore, MD, 21218, USA.

Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China.

出版信息

Eur Biophys J. 2017 Oct;46(7):627-637. doi: 10.1007/s00249-017-1206-x. Epub 2017 Apr 13.

Abstract

Hydrophobic amino acids are abundant in transmembrane (TM) helices of membrane proteins. Charged residues are sparse, apparently due to the unfavorable energetic cost of partitioning charges into nonpolar phases. Nevertheless, conserved arginine residues within TM helices regulate vital functions, such as ion channel voltage gating and integrin receptor inactivation. The energetic cost of arginine in various positions along hydrophobic helices has been controversial. Potential of mean force (PMF) calculations from atomistic molecular dynamics simulations predict very large energetic penalties, while in vitro experiments with Sec61 translocons indicate much smaller penalties, even for arginine in the center of hydrophobic TM helices. Resolution of this conflict has proved difficult, because the in vitro assay utilizes the complex Sec61 translocon, while the PMF calculations rely on the choice of simulation system and reaction coordinate. Here we present the results of computational and experimental studies that permit direct comparison with the Sec61 translocon results. We find that the Sec61 translocon mediates less efficient membrane insertion of Arg-containing TM helices compared with our computational and experimental bilayer-insertion results. In the simulations, a combination of arginine snorkeling, bilayer deformation, and peptide tilting is sufficient to lower the penalty of Arg insertion to an extent such that a hydrophobic TM helix with a central Arg residue readily inserts into a model membrane. Less favorable insertion by the translocon may be due to the decreased fluidity of the endoplasmic reticulum (ER) membrane compared with pure palmitoyloleoyl-phosphocholine (POPC). Nevertheless, our results provide an explanation for the differences between PMF- and experiment-based penalties for Arg burial.

摘要

疏水性氨基酸在膜蛋白的跨膜(TM)螺旋中含量丰富。带电荷的残基稀少,这显然是由于将电荷分配到非极性相中会产生不利的能量成本。然而,TM螺旋中的保守精氨酸残基调节着重要功能,如离子通道电压门控和整合素受体失活。精氨酸在疏水螺旋不同位置的能量成本一直存在争议。基于原子分子动力学模拟的平均力势(PMF)计算预测能量惩罚非常大,而使用Sec61转运体的体外实验表明惩罚要小得多,即使对于疏水TM螺旋中心的精氨酸也是如此。由于体外测定使用的是复杂的Sec61转运体,而PMF计算依赖于模拟系统和反应坐标的选择,因此解决这一冲突很困难。在此,我们展示了计算和实验研究的结果,这些结果可以与Sec61转运体的结果进行直接比较。我们发现,与我们的计算和实验双层插入结果相比,Sec61转运体介导含精氨酸的TM螺旋的膜插入效率较低。在模拟中,精氨酸的潜泳、双层变形和肽的倾斜相结合足以将精氨酸插入的惩罚降低到一定程度,使得带有中心精氨酸残基的疏水TM螺旋能够轻易插入模型膜中。转运体插入不太有利可能是由于内质网(ER)膜与纯棕榈酰油酰磷脂胆碱(POPC)相比流动性降低。尽管如此,我们的结果为基于PMF和实验的精氨酸埋藏惩罚之间的差异提供了解释。

相似文献

1
Transmembrane helices containing a charged arginine are thermodynamically stable.
Eur Biophys J. 2017 Oct;46(7):627-637. doi: 10.1007/s00249-017-1206-x. Epub 2017 Apr 13.
2
Arginine in membranes: the connection between molecular dynamics simulations and translocon-mediated insertion experiments.
J Membr Biol. 2011 Jan;239(1-2):35-48. doi: 10.1007/s00232-010-9330-x. Epub 2010 Dec 3.
3
Membrane insertion of a voltage sensor helix.
Biophys J. 2011 Jan 19;100(2):410-9. doi: 10.1016/j.bpj.2010.12.3682.
4
Insertion of short transmembrane helices by the Sec61 translocon.
Proc Natl Acad Sci U S A. 2009 Jul 14;106(28):11588-93. doi: 10.1073/pnas.0900638106. Epub 2009 Jul 6.
5
On the thermodynamic stability of a charged arginine side chain in a transmembrane helix.
Proc Natl Acad Sci U S A. 2007 Mar 20;104(12):4943-8. doi: 10.1073/pnas.0610470104. Epub 2007 Mar 13.
6
Molecular dynamics simulations of the dimerization of transmembrane alpha-helices.
Acc Chem Res. 2010 Mar 16;43(3):388-96. doi: 10.1021/ar900211k.
9
The positive inside rule is stronger when followed by a transmembrane helix.
J Mol Biol. 2014 Aug 12;426(16):2982-91. doi: 10.1016/j.jmb.2014.06.002. Epub 2014 Jun 10.
10

引用本文的文献

1
Transmembrane Parkinson's disease mutation of PINK1 leads to altered mitochondrial anchoring.
J Biol Chem. 2025 Mar;301(3):108253. doi: 10.1016/j.jbc.2025.108253. Epub 2025 Feb 3.
2
Computational investigation of the effect of BODIPY labelling on peptide-membrane interaction.
Sci Rep. 2024 Nov 12;14(1):27726. doi: 10.1038/s41598-024-72662-y.
3
Implicit model to capture electrostatic features of membrane environment.
PLoS Comput Biol. 2024 Jan 22;20(1):e1011296. doi: 10.1371/journal.pcbi.1011296. eCollection 2024 Jan.
4
Molecular Dynamics Simulations of Drug-Conjugated Cell-Penetrating Peptides.
Pharmaceuticals (Basel). 2023 Sep 5;16(9):1251. doi: 10.3390/ph16091251.
5
Building Biological Relevance Into Integrative Modelling of Macromolecular Assemblies.
Front Mol Biosci. 2022 Apr 11;9:826136. doi: 10.3389/fmolb.2022.826136. eCollection 2022.
6
Structural and Functional Insights into the Transmembrane Domain Association of Eph Receptors.
Int J Mol Sci. 2021 Aug 10;22(16):8593. doi: 10.3390/ijms22168593.
7
Letter to the Editor: Distanced Inspiration from the Career of Stephen H. White.
J Membr Biol. 2021 Feb;254(1):1-3. doi: 10.1007/s00232-020-00146-x. Epub 2020 Oct 24.
8
Conserved Luminal C-Terminal Domain Dynamically Controls Interdomain Communication in Sarcolipin.
J Chem Inf Model. 2020 Aug 24;60(8):3985-3991. doi: 10.1021/acs.jcim.0c00418. Epub 2020 Jul 27.
9
Topological analysis of the gp41 MPER on lipid bilayers relevant to the metastable HIV-1 envelope prefusion state.
Proc Natl Acad Sci U S A. 2019 Nov 5;116(45):22556-22566. doi: 10.1073/pnas.1912427116. Epub 2019 Oct 17.
10
Interaction of the Mechanosensitive Channel, MscS, with the Membrane Bilayer through Lipid Intercalation into Grooves and Pockets.
J Mol Biol. 2019 Aug 9;431(17):3339-3352. doi: 10.1016/j.jmb.2019.05.043. Epub 2019 Jun 4.

本文引用的文献

1
Peptide Partitioning and Folding into Lipid Bilayers.
J Chem Theory Comput. 2009 Sep 8;5(9):2202-5. doi: 10.1021/ct900256k.
3
Anomalous behavior of water inside the SecY translocon.
Proc Natl Acad Sci U S A. 2015 Jul 21;112(29):9016-21. doi: 10.1073/pnas.1424483112. Epub 2015 Jul 2.
4
Mechanisms of integral membrane protein insertion and folding.
J Mol Biol. 2015 Mar 13;427(5):999-1022. doi: 10.1016/j.jmb.2014.09.014. Epub 2014 Sep 30.
6
Determination of membrane-insertion free energies by molecular dynamics simulations.
Biophys J. 2012 Feb 22;102(4):795-801. doi: 10.1016/j.bpj.2012.01.021. Epub 2012 Feb 21.
7
Basic amino-acid side chains regulate transmembrane integrin signalling.
Nature. 2011 Dec 18;481(7380):209-13. doi: 10.1038/nature10697.
8
Hydrophobicity scales: a thermodynamic looking glass into lipid-protein interactions.
Trends Biochem Sci. 2011 Dec;36(12):653-62. doi: 10.1016/j.tibs.2011.08.003. Epub 2011 Sep 18.
9
In silico partitioning and transmembrane insertion of hydrophobic peptides under equilibrium conditions.
J Am Chem Soc. 2011 Oct 5;133(39):15487-95. doi: 10.1021/ja204042f. Epub 2011 Sep 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验