Ulmschneider Martin B, Ulmschneider Jakob P, Freites J Alfredo, von Heijne Gunnar, Tobias Douglas J, White Stephen H
Institute for NanoBioTechnology and Department of Materials Science, Johns Hopkins University, Baltimore, MD, 21218, USA.
Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China.
Eur Biophys J. 2017 Oct;46(7):627-637. doi: 10.1007/s00249-017-1206-x. Epub 2017 Apr 13.
Hydrophobic amino acids are abundant in transmembrane (TM) helices of membrane proteins. Charged residues are sparse, apparently due to the unfavorable energetic cost of partitioning charges into nonpolar phases. Nevertheless, conserved arginine residues within TM helices regulate vital functions, such as ion channel voltage gating and integrin receptor inactivation. The energetic cost of arginine in various positions along hydrophobic helices has been controversial. Potential of mean force (PMF) calculations from atomistic molecular dynamics simulations predict very large energetic penalties, while in vitro experiments with Sec61 translocons indicate much smaller penalties, even for arginine in the center of hydrophobic TM helices. Resolution of this conflict has proved difficult, because the in vitro assay utilizes the complex Sec61 translocon, while the PMF calculations rely on the choice of simulation system and reaction coordinate. Here we present the results of computational and experimental studies that permit direct comparison with the Sec61 translocon results. We find that the Sec61 translocon mediates less efficient membrane insertion of Arg-containing TM helices compared with our computational and experimental bilayer-insertion results. In the simulations, a combination of arginine snorkeling, bilayer deformation, and peptide tilting is sufficient to lower the penalty of Arg insertion to an extent such that a hydrophobic TM helix with a central Arg residue readily inserts into a model membrane. Less favorable insertion by the translocon may be due to the decreased fluidity of the endoplasmic reticulum (ER) membrane compared with pure palmitoyloleoyl-phosphocholine (POPC). Nevertheless, our results provide an explanation for the differences between PMF- and experiment-based penalties for Arg burial.
疏水性氨基酸在膜蛋白的跨膜(TM)螺旋中含量丰富。带电荷的残基稀少,这显然是由于将电荷分配到非极性相中会产生不利的能量成本。然而,TM螺旋中的保守精氨酸残基调节着重要功能,如离子通道电压门控和整合素受体失活。精氨酸在疏水螺旋不同位置的能量成本一直存在争议。基于原子分子动力学模拟的平均力势(PMF)计算预测能量惩罚非常大,而使用Sec61转运体的体外实验表明惩罚要小得多,即使对于疏水TM螺旋中心的精氨酸也是如此。由于体外测定使用的是复杂的Sec61转运体,而PMF计算依赖于模拟系统和反应坐标的选择,因此解决这一冲突很困难。在此,我们展示了计算和实验研究的结果,这些结果可以与Sec61转运体的结果进行直接比较。我们发现,与我们的计算和实验双层插入结果相比,Sec61转运体介导含精氨酸的TM螺旋的膜插入效率较低。在模拟中,精氨酸的潜泳、双层变形和肽的倾斜相结合足以将精氨酸插入的惩罚降低到一定程度,使得带有中心精氨酸残基的疏水TM螺旋能够轻易插入模型膜中。转运体插入不太有利可能是由于内质网(ER)膜与纯棕榈酰油酰磷脂胆碱(POPC)相比流动性降低。尽管如此,我们的结果为基于PMF和实验的精氨酸埋藏惩罚之间的差异提供了解释。