Suppr超能文献

用于捕获膜环境静电特征的隐式模型。

Implicit model to capture electrostatic features of membrane environment.

机构信息

Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America.

Program in Molecular Biophysics, Johns Hopkins University, Baltimore, Maryland, United States of America.

出版信息

PLoS Comput Biol. 2024 Jan 22;20(1):e1011296. doi: 10.1371/journal.pcbi.1011296. eCollection 2024 Jan.

Abstract

Membrane protein structure prediction and design are challenging due to the complexity of capturing the interactions in the lipid layer, such as those arising from electrostatics. Accurately capturing electrostatic energies in the low-dielectric membrane often requires expensive Poisson-Boltzmann calculations that are not scalable for membrane protein structure prediction and design. In this work, we have developed a fast-to-compute implicit energy function that considers the realistic characteristics of different lipid bilayers, making design calculations tractable. This method captures the impact of the lipid head group using a mean-field-based approach and uses a depth-dependent dielectric constant to characterize the membrane environment. This energy function Franklin2023 (F23) is built upon Franklin2019 (F19), which is based on experimentally derived hydrophobicity scales in the membrane bilayer. We evaluated the performance of F23 on five different tests probing (1) protein orientation in the bilayer, (2) stability, and (3) sequence recovery. Relative to F19, F23 has improved the calculation of the tilt angle of membrane proteins for 90% of WALP peptides, 15% of TM-peptides, and 25% of the adsorbed peptides. The performances for stability and design tests were equivalent for F19 and F23. The speed and calibration of the implicit model will help F23 access biophysical phenomena at long time and length scales and accelerate the membrane protein design pipeline.

摘要

由于捕获脂质层中相互作用(如静电相互作用)的复杂性,膜蛋白结构预测和设计具有挑战性。准确捕获低介电常数膜中的静电能通常需要昂贵的泊松-玻尔兹曼计算,而这些计算对于膜蛋白结构预测和设计来说是不可扩展的。在这项工作中,我们开发了一种快速计算的隐式能量函数,该函数考虑了不同脂质双层的实际特性,使设计计算变得可行。该方法使用基于平均场的方法捕获脂质头基的影响,并使用深度相关介电常数来描述膜环境。这种能量函数 Franklin2023(F23)建立在 Franklin2019(F19)的基础上,F19 基于膜双层中实验得出的疏水性尺度。我们通过五个不同的测试评估了 F23 的性能,这些测试分别探测(1)蛋白质在双层中的取向、(2)稳定性和(3)序列恢复。与 F19 相比,F23 提高了 90%的 WALP 肽、15%的 TM-肽和 25%的吸附肽的膜蛋白倾斜角的计算。F19 和 F23 在稳定性和设计测试中的性能相当。隐式模型的速度和校准将有助于 F23 研究长时间和大尺度的生物物理现象,并加速膜蛋白设计流程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ae2/10833867/22b8c1d38e64/pcbi.1011296.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验