Suppr超能文献

kpLogo:位置 k- -mer 分析揭示了生物序列中的隐藏特异性。

kpLogo: positional k-mer analysis reveals hidden specificity in biological sequences.

机构信息

Howard Hughes Medical Institute and Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.

Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

出版信息

Nucleic Acids Res. 2017 Jul 3;45(W1):W534-W538. doi: 10.1093/nar/gkx323.

Abstract

Motifs of only 1-4 letters can play important roles when present at key locations within macromolecules. Because existing motif-discovery tools typically miss these position-specific short motifs, we developed kpLogo, a probability-based logo tool for integrated detection and visualization of position-specific ultra-short motifs from a set of aligned sequences. kpLogo also overcomes the limitations of conventional motif-visualization tools in handling positional interdependencies and utilizing ranked or weighted sequences increasingly available from high-throughput assays. kpLogo can be found at http://kplogo.wi.mit.edu/.

摘要

只有 1-4 个字母的基序在大分子的关键位置出现时可能发挥重要作用。由于现有的基序发现工具通常会错过这些位置特异性的短基序,我们开发了 kpLogo,这是一种基于概率的 logo 工具,用于从一组对齐序列中集成检测和可视化位置特异性的超短基序。kpLogo 还克服了传统基序可视化工具在处理位置相关性和利用高通量测定中越来越多的排序或加权序列方面的局限性。kpLogo 可在 http://kplogo.wi.mit.edu/ 找到。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b23/5570168/722eace5ebc5/gkx323fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验