Marteijn Jurgen A, Vermeulen Wim, Tresini Maria
Department of Molecular Genetics, Cancer Genomics Netherlands, Erasmus University Medical Center, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands.
Methods Mol Biol. 2017;1599:347-361. doi: 10.1007/978-1-4939-6955-5_25.
Environmental genotoxins and metabolic byproducts generate DNA lesions that can cause genomic instability and disrupt tissue homeostasis. To ensure genomic integrity, cells employ mechanisms that convert signals generated by stochastic DNA damage into organized responses, including activation of repair systems, cell cycle checkpoints, and apoptotic mechanisms. DNA damage response (DDR) signaling pathways coordinate these responses and determine cellular fates in part, by transducing signals that modulate RNA metabolism. One of the master DDR coordinators, the Ataxia Telangiectasia Mutated (ATM) kinase, has a fundamental role in mediating DNA damage-induced changes in mRNA synthesis. ATM acts by modulating a variety of RNA metabolic pathways including nascent RNA splicing, a process catalyzed by the spliceosome. Interestingly, ATM and the spliceosome influence each other's activity in a reciprocal manner by a pathway that initiates when transcribing RNA polymerase II (RNAPII) encounters DNA lesions that prohibit forward translocation. In response to stalling of RNAPII assembly of late-stage spliceosomes is disrupted resulting in increased splicing factor mobility. Displacement of spliceosomes from lesion-arrested RNA polymerases facilitates formation of R-loops between the nascent RNA and DNA adjacent to the transcription bubble. R-loops signal for noncanonical ATM activation which in quiescent cells occurs in absence of detectable dsDNA breaks. In turn, activated ATM signals to regulate spliceosome dynamics and AS genome wide.This chapter describes the use of fluorescence microscopy methods that can be used to evaluate noncanonical ATM activation by transcription-blocking DNA damage. First, we present an immunofluorescence-detection method that can be used to evaluate ATM activation by autophosphorylation, in fixed cells. Second, we present a protocol for Fluorescence Recovery After Photobleaching (FRAP) of GFP-tagged splicing factors, a highly sensitive and reproducible readout to measure in living cells, the ATM influence on the spliceosome. These approaches have been extensively used in our laboratory for a number of cell lines of various origins and are particularly informative when used in primary cells that can be synchronized in quiescence, to avoid generation of replication stress-induced dsDNA breaks and consequent ATM activation through its canonical pathway.
环境基因毒素和代谢副产物会产生DNA损伤,进而导致基因组不稳定并破坏组织内稳态。为确保基因组完整性,细胞会采用一些机制,将随机DNA损伤产生的信号转化为有组织的反应,包括激活修复系统、细胞周期检查点和凋亡机制。DNA损伤反应(DDR)信号通路协调这些反应,并部分地通过转导调节RNA代谢的信号来决定细胞命运。主要的DDR协调因子之一,共济失调毛细血管扩张症突变(ATM)激酶,在介导DNA损伤诱导的mRNA合成变化中起着基本作用。ATM通过调节多种RNA代谢途径发挥作用,包括新生RNA剪接,这是一个由剪接体催化的过程。有趣的是,ATM和剪接体通过一种相互作用的方式影响彼此的活性,该途径始于转录RNA聚合酶II(RNAPII)遇到阻止向前移位的DNA损伤时。响应于RNAPII的停滞,晚期剪接体的组装被破坏,导致剪接因子迁移率增加。剪接体从损伤停滞的RNA聚合酶上的移位促进了新生RNA与转录泡相邻的DNA之间R环的形成。R环为非经典ATM激活发出信号,这在静止细胞中发生在没有可检测到的双链DNA断裂的情况下。反过来,激活的ATM发出信号来调节剪接体动力学和全基因组的可变剪接。本章描述了可用于通过转录阻断DNA损伤评估非经典ATM激活的荧光显微镜方法。首先,我们介绍一种免疫荧光检测方法,可用于评估固定细胞中通过自磷酸化的ATM激活。其次,我们介绍一种用于绿色荧光蛋白标记的剪接因子的光漂白后荧光恢复(FRAP)方案,这是一种高度灵敏且可重复的读数,用于测量活细胞中ATM对剪接体的影响。这些方法已在我们实验室广泛用于多种来源的许多细胞系,当用于可同步进入静止状态的原代细胞时,特别有参考价值,以避免产生复制应激诱导的双链DNA断裂以及随后通过其经典途径激活ATM。