Suppr超能文献

次卤酸在基底膜稳态中的作用。

Role of Hypohalous Acids in Basement Membrane Homeostasis.

作者信息

Colon Selene, Page-McCaw Patrick, Bhave Gautam

机构信息

1 Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center , Nashville, Tennessee.

2 Department of Biological Sciences, Tennessee State University , Nashville, Tennessee.

出版信息

Antioxid Redox Signal. 2017 Oct 20;27(12):839-854. doi: 10.1089/ars.2017.7245. Epub 2017 Jul 31.

Abstract

SIGNIFICANCE

Basement membranes (BMs) are sheet-like structures of specialized extracellular matrix that underlie nearly all tissue cell layers including epithelial, endothelial, and muscle cells. BMs not only provide structural support but are also critical for the development, maintenance, and repair of organs. Animal heme peroxidases generate highly reactive hypohalous acids extracellularly and, therefore, target BMs for oxidative modification. Given the importance of BMs in tissue structure and function, hypohalous acid-mediated oxidative modifications of BM proteins represent a key mechanism in normal development and pathogenesis of disease. Recent Advances: Peroxidasin (PXDN), a BM-associated animal heme peroxidase, generates hypobromous acid (HOBr) to form sulfilimine cross-links within the collagen IV network of BM. These cross-links stabilize BM and are critical for animal tissue development. These findings highlight a paradoxical anabolic role for HOBr, which typically damages protein structure leading to dysfunction.

CRITICAL ISSUES

The molecular mechanism whereby PXDN uses HOBr as a reactive intermediate to cross-link collagen IV, yet avoid collateral damage to nearby BM proteins, remains unclear.

FUTURE DIRECTIONS

The exact identification and functional impact of specific hypohalous acid-mediated modifications of BM proteins need to be addressed to connect these modifications to tissue development and pathogenesis of disease. As seen with the sulfilimine cross-link of collagen IV, hypohalous acid oxidative events may be beneficial in select situations rather than uniformly deleterious. Antioxid. Redox Signal. 27, 839-854.

摘要

意义

基底膜(BMs)是特殊细胞外基质的片状结构,几乎位于所有组织细胞层之下,包括上皮细胞、内皮细胞和肌肉细胞。基底膜不仅提供结构支持,对器官的发育、维持和修复也至关重要。动物血红素过氧化物酶在细胞外产生高反应性的次卤酸,因此将基底膜作为氧化修饰的靶点。鉴于基底膜在组织结构和功能中的重要性,次卤酸介导的基底膜蛋白氧化修饰是正常发育和疾病发病机制中的关键机制。最新进展:过氧化物酶(PXDN)是一种与基底膜相关的动物血红素过氧化物酶,它产生次溴酸(HOBr),在基底膜的IV型胶原网络内形成亚磺酰亚胺交联。这些交联稳定了基底膜,对动物组织发育至关重要。这些发现凸显了次溴酸矛盾的合成代谢作用,它通常会破坏蛋白质结构导致功能障碍。

关键问题

PXDN利用次溴酸作为反应中间体交联IV型胶原,同时避免对附近基底膜蛋白造成附带损伤的分子机制仍不清楚。

未来方向

需要确定基底膜蛋白特定次卤酸介导修饰的确切身份及其功能影响,以便将这些修饰与组织发育和疾病发病机制联系起来。正如IV型胶原的亚磺酰亚胺交联所示,次卤酸氧化事件在某些情况下可能是有益的,而不是一律有害。《抗氧化与氧化还原信号》27卷,839 - 854页 。

相似文献

1
Role of Hypohalous Acids in Basement Membrane Homeostasis.
Antioxid Redox Signal. 2017 Oct 20;27(12):839-854. doi: 10.1089/ars.2017.7245. Epub 2017 Jul 31.
2
Peroxidasin-mediated bromine enrichment of basement membranes.
Proc Natl Acad Sci U S A. 2020 Jul 7;117(27):15827-15836. doi: 10.1073/pnas.2007749117. Epub 2020 Jun 22.
3
Proprotein Convertase Processing Enhances Peroxidasin Activity to Reinforce Collagen IV.
J Biol Chem. 2016 Nov 11;291(46):24009-24016. doi: 10.1074/jbc.M116.745935. Epub 2016 Oct 3.
4
The sulfilimine cross-link of collagen IV contributes to kidney tubular basement membrane stiffness.
Am J Physiol Renal Physiol. 2017 Sep 1;313(3):F596-F602. doi: 10.1152/ajprenal.00096.2017. Epub 2017 Apr 19.
5
The Ancient Immunoglobulin Domains of Peroxidasin Are Required to Form Sulfilimine Cross-links in Collagen IV.
J Biol Chem. 2015 Aug 28;290(35):21741-8. doi: 10.1074/jbc.M115.673996. Epub 2015 Jul 15.
6
A unique covalent bond in basement membrane is a primordial innovation for tissue evolution.
Proc Natl Acad Sci U S A. 2014 Jan 7;111(1):331-6. doi: 10.1073/pnas.1318499111. Epub 2013 Dec 16.
7
Characterisation of peroxidasin activity in isolated extracellular matrix and direct detection of hypobromous acid formation.
Arch Biochem Biophys. 2018 May 15;646:120-127. doi: 10.1016/j.abb.2018.03.038. Epub 2018 Apr 4.
8
Structure-function analysis of peroxidasin provides insight into the mechanism of collagen IV crosslinking.
Free Radic Biol Med. 2015 Jun;83:273-82. doi: 10.1016/j.freeradbiomed.2015.02.015. Epub 2015 Feb 20.
9
Peroxidasin forms sulfilimine chemical bonds using hypohalous acids in tissue genesis.
Nat Chem Biol. 2012 Sep;8(9):784-90. doi: 10.1038/nchembio.1038. Epub 2012 Jul 29.
10
Identification of tyrosine brominated extracellular matrix proteins in normal and fibrotic lung tissues.
Redox Biol. 2024 May;71:103102. doi: 10.1016/j.redox.2024.103102. Epub 2024 Feb 23.

引用本文的文献

2
Advances in the mechanism of small nucleolar RNA and its role in DNA damage response.
Mil Med Res. 2024 Aug 8;11(1):53. doi: 10.1186/s40779-024-00553-4.
3
Peroxidasin Inhibition by Phloroglucinol and Other Peroxidase Inhibitors.
Antioxidants (Basel). 2023 Dec 21;13(1):23. doi: 10.3390/antiox13010023.
4
Mechanism of peroxidasin inactivation in hyperglycemia: Heme damage by reactive oxygen species.
Biochem Biophys Res Commun. 2023 Dec 31;689:149237. doi: 10.1016/j.bbrc.2023.149237. Epub 2023 Nov 11.
5
The role of peroxidasin in solid cancer progression.
Biochem Soc Trans. 2023 Oct 31;51(5):1881-1895. doi: 10.1042/BST20230018.
6
Identification of brominated proteins in renal extracellular matrix: Potential interactions with peroxidasin.
Biochem Biophys Res Commun. 2023 Nov 12;681:152-156. doi: 10.1016/j.bbrc.2023.09.063. Epub 2023 Sep 25.
7
The Role of Reactive Species on Innate Immunity.
Vaccines (Basel). 2022 Oct 17;10(10):1735. doi: 10.3390/vaccines10101735.
8
Measuring peroxidasin activity in live cells using bromide addition for signal amplification.
Redox Biol. 2022 Aug;54:102385. doi: 10.1016/j.redox.2022.102385. Epub 2022 Jun 30.
9
Peroxidasin Enhances Basal Phenotype and Inhibits Branching Morphogenesis in Breast Epithelial Progenitor Cell Line D492.
J Mammary Gland Biol Neoplasia. 2021 Dec;26(4):321-338. doi: 10.1007/s10911-021-09507-1. Epub 2021 Dec 28.
10
Inhibition of Myeloperoxidase.
Handb Exp Pharmacol. 2021;264:261-285. doi: 10.1007/164_2020_388.

本文引用的文献

1
The sulfilimine cross-link of collagen IV contributes to kidney tubular basement membrane stiffness.
Am J Physiol Renal Physiol. 2017 Sep 1;313(3):F596-F602. doi: 10.1152/ajprenal.00096.2017. Epub 2017 Apr 19.
2
Critical role of vascular peroxidase 1 in regulating endothelial nitric oxide synthase.
Redox Biol. 2017 Aug;12:226-232. doi: 10.1016/j.redox.2017.02.022. Epub 2017 Feb 27.
3
Pre-steady-state Kinetics Reveal the Substrate Specificity and Mechanism of Halide Oxidation of Truncated Human Peroxidasin 1.
J Biol Chem. 2017 Mar 17;292(11):4583-4592. doi: 10.1074/jbc.M117.775213. Epub 2017 Jan 31.
4
Lysyl Oxidase-like-2 Cross-links Collagen IV of Glomerular Basement Membrane.
J Biol Chem. 2016 Dec 9;291(50):25999-26012. doi: 10.1074/jbc.M116.738856. Epub 2016 Oct 21.
5
Proprotein Convertase Processing Enhances Peroxidasin Activity to Reinforce Collagen IV.
J Biol Chem. 2016 Nov 11;291(46):24009-24016. doi: 10.1074/jbc.M116.745935. Epub 2016 Oct 3.
6
Involvement of vascular peroxidase 1 in angiotensin II-induced hypertrophy of H9c2 cells.
J Am Soc Hypertens. 2017 Aug;11(8):519-529.e1. doi: 10.1016/j.jash.2016.08.002. Epub 2016 Aug 24.
7
A current view of perlecan in physiology and pathology: A mosaic of functions.
Matrix Biol. 2017 Jan;57-58:285-298. doi: 10.1016/j.matbio.2016.09.003. Epub 2016 Sep 6.
9
VPO1 mediates oxidation of LDL and formation of foam cells.
Oncotarget. 2016 Jun 14;7(24):35500-35511. doi: 10.18632/oncotarget.9193.
10
Thiol-Disulfide Exchange Reactions in the Mammalian Extracellular Environment.
Annu Rev Chem Biomol Eng. 2016 Jun 7;7:197-222. doi: 10.1146/annurev-chembioeng-080615-033553. Epub 2016 Mar 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验