Nakanishi Kousuke, Tanaka Atsuhiro, Hashimoto Keiji, Kominami Hiroshi
Interdisciplinary Graduate School of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashiosaka, Osaka 577-8502, Japan.
Phys Chem Chem Phys. 2017 Aug 2;19(30):20206-20212. doi: 10.1039/c7cp02891a.
The use of metal co-catalysts broadens the application of photocatalytic reduction without the use of dihydrogen (H) gas. We examined photocatalytic hydrogenation of furan, a representative heterocyclic compound and a compound derived from biomass, in alcoholic suspensions of metal-loaded titanium(iv) oxide (TiO) under a H-free condition and we found that furan was almost quantitatively hydrogenated to tetrahydrofuran with a high apparent quantum efficiency of 37% at 360 nm when palladium was used as a co-catalyst. Effects of different metal co-catalysts, different amounts of the co-catalyst, the type of TiO, the type of alcohol, light wavelength and reusability for furan hydrogenation were investigated. Based on the results, the functions of TiO and the co-catalyst and the reaction process are discussed.
金属助催化剂的使用拓宽了光催化还原的应用范围,且无需使用氢气(H₂)。我们在无氢气条件下,研究了负载金属的二氧化钛(TiO₂)的醇悬浮液中呋喃(一种代表性的杂环化合物和源自生物质的化合物)的光催化氢化反应。我们发现,当使用钯作为助催化剂时,呋喃几乎能定量地氢化为四氢呋喃,在360 nm处具有37%的高表观量子效率。研究了不同金属助催化剂、不同助催化剂用量、TiO₂类型、醇的类型、光波长以及呋喃氢化反应的可重复使用性的影响。基于这些结果,讨论了TiO₂和助催化剂的功能以及反应过程。