Suppr超能文献

用基因组编辑技术培育负责任的研究:欧洲视角。

Fostering responsible research with genome editing technologies: a European perspective.

机构信息

INSERM Ethics Committee, Paris, France.

National Centre for Biotechnology (CNB-CSIC), CSIC Ethics Committee and CIBERER-ISCIII, Madrid, Spain.

出版信息

Transgenic Res. 2017 Oct;26(5):709-713. doi: 10.1007/s11248-017-0028-z. Epub 2017 Jul 20.

Abstract

In this consensus paper resulting from a meeting that involved representatives from more than 20 European partners, we recommend the foundation of an expert group (European Steering Committee) to assess the potential benefits and draw-backs of genome editing (off-targets, mosaicisms, etc.), and to design risk matrices and scenarios for a responsible use of this promising technology. In addition, this European steering committee will contribute in promoting an open debate on societal aspects prior to a translation into national and international legislation.

摘要

在这份由来自 20 多个欧洲合作伙伴的代表参与的会议达成的共识文件中,我们建议成立一个专家组(欧洲指导委员会),评估基因组编辑(脱靶效应、嵌合体等)的潜在益处和弊端,并设计风险矩阵和方案,以负责任地使用这项有前途的技术。此外,该欧洲指导委员会将为在转化为国家和国际立法之前,就社会层面问题进行公开辩论做出贡献。

相似文献

1
Fostering responsible research with genome editing technologies: a European perspective.
Transgenic Res. 2017 Oct;26(5):709-713. doi: 10.1007/s11248-017-0028-z. Epub 2017 Jul 20.
2
Targeted Gene Manipulation in Plants Using the CRISPR/Cas Technology.
J Genet Genomics. 2016 May 20;43(5):251-62. doi: 10.1016/j.jgg.2016.03.001. Epub 2016 Mar 11.
3
CRISPR as a driving force: the Model T of biotechnology.
Monash Bioeth Rev. 2016 Jun;34(2):101-116. doi: 10.1007/s40592-016-0062-2.
4
Jennifer Doudna: Tailoring the Genome.
Trends Cancer. 2016 Oct;2(10):536-537. doi: 10.1016/j.trecan.2016.09.010. Epub 2016 Oct 21.
5
A Toolkit of CRISPR-Based Genome Editing Systems in Drosophila.
J Genet Genomics. 2015 Apr 20;42(4):141-9. doi: 10.1016/j.jgg.2015.02.007. Epub 2015 Mar 12.
7
Nonviral Nanoparticles for CRISPR-Based Genome Editing: Is It Just a Simple Adaption of What Have Been Developed for Nucleic Acid Delivery?
Biomacromolecules. 2019 Sep 9;20(9):3333-3339. doi: 10.1021/acs.biomac.9b00783. Epub 2019 Aug 7.
8
CRISPR-Cas9: From a bacterial immune system to genome-edited human cells in clinical trials.
Bioengineered. 2017 May 4;8(3):280-286. doi: 10.1080/21655979.2017.1299834. Epub 2017 Mar 13.
10
Next Generation Prokaryotic Engineering: The CRISPR-Cas Toolkit.
Trends Biotechnol. 2016 Jul;34(7):575-587. doi: 10.1016/j.tibtech.2016.02.004. Epub 2016 Mar 2.

引用本文的文献

1
Governing with public engagement: an anticipatory approach to human genome editing.
Sci Public Policy. 2024 Mar 25;51(4):680-691. doi: 10.1093/scipol/scae010. eCollection 2024 Aug.
2
Toward Anticipatory Governance of Human Genome Editing: A Critical Review of Scholarly Governance Discourse.
J Responsible Innov. 2021;8(3):382-420. doi: 10.1080/23299460.2021.1957579. Epub 2021 Jul 29.
3
Herbicide Resistance: Another Hot Agronomic Trait for Plant Genome Editing.
Plants (Basel). 2021 Mar 24;10(4):621. doi: 10.3390/plants10040621.
4
Genome editing with the CRISPR-Cas system: an art, ethics and global regulatory perspective.
Plant Biotechnol J. 2020 Aug;18(8):1651-1669. doi: 10.1111/pbi.13383. Epub 2020 Apr 30.
5
Genome Editing: Promoting Responsible Research.
Pharmaceut Med. 2019 Jun;33(3):187-191. doi: 10.1007/s40290-019-00276-1.
6
Ethics assessment in research proposals adopting CRISPR technology.
Biochem Med (Zagreb). 2019 Jun 15;29(2):020202. doi: 10.11613/BM.2019.020202.
7
Do CRISPR Germline Ethics Statements Cut It?
CRISPR J. 2018 Apr;1(2):115-125. doi: 10.1089/crispr.2017.0024.
8
ARRIGE Arrives: Toward the Responsible Use of Genome Editing.
CRISPR J. 2018 Apr;1(2):128-129. doi: 10.1089/crispr.2018.29012.mon.
9
Revisiting Risk Governance of GM Plants: The Need to Consider New and Emerging Gene-Editing Techniques.
Front Plant Sci. 2018 Dec 21;9:1874. doi: 10.3389/fpls.2018.01874. eCollection 2018.
10
Normative Criteria and Their Inclusion in a Regulatory Framework for New Plant Varieties Derived From Genome Editing.
Front Bioeng Biotechnol. 2018 Dec 19;6:176. doi: 10.3389/fbioe.2018.00176. eCollection 2018.

本文引用的文献

1
Inhibition of CRISPR-Cas9 with Bacteriophage Proteins.
Cell. 2017 Jan 12;168(1-2):150-158.e10. doi: 10.1016/j.cell.2016.12.009. Epub 2016 Dec 29.
2
Applications of CRISPR technologies in research and beyond.
Nat Biotechnol. 2016;34(9):933-941. doi: 10.1038/nbt.3659. Epub 2016 Sep 8.
3
On the Origin of CRISPR-Cas Technology: From Prokaryotes to Mammals.
Trends Microbiol. 2016 Oct;24(10):811-820. doi: 10.1016/j.tim.2016.06.005. Epub 2016 Jul 9.
4
Characterization of Cas9-Guide RNA Orthologs.
Cold Spring Harb Protoc. 2016 May 2;2016(5):2016/5/pdb.top086793. doi: 10.1101/pdb.top086793.
5
Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system.
Cell. 2015 Oct 22;163(3):759-71. doi: 10.1016/j.cell.2015.09.038. Epub 2015 Sep 25.
6
Genome editing. The mutagenic chain reaction: a method for converting heterozygous to homozygous mutations.
Science. 2015 Apr 24;348(6233):442-4. doi: 10.1126/science.aaa5945. Epub 2015 Mar 19.
7
ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering.
Trends Biotechnol. 2013 Jul;31(7):397-405. doi: 10.1016/j.tibtech.2013.04.004. Epub 2013 May 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验