UR LISC Laboratoire d'ingénierie pour les systèmes complexes, Irstea, Aubière, France.
LMGE, UMR6023 CNRS, Université Clermont Auvergne, Clermont-Ferrand, France.
Microb Biotechnol. 2017 Nov;10(6):1616-1627. doi: 10.1111/1751-7915.12739. Epub 2017 Jul 21.
We developed and compared two mathematical models of variable phenotypic switching rates between normal and persister cells that depend on substrate concentration and antibiotic presence. They could be used to simulate the formation of persisters in environments with concentration gradients such as biofilms. Our models are extensions of a previous model of the dynamics of normal and persistent cell populations developed by Balaban et al. (2004, Science 305: 1622). We calibrated the models' parameters with experimental killing curves obtained after ciprofloxacin treatment of samples regularly harvested from planktonic batch cultures of Klebsiella pneumoniae. Our switching models accurately reproduced the dynamics of normal and persistent populations in planktonic batch cultures and under antibiotic treatment. Results showed that the models are valid for a large range of substrate concentrations and for zero or high doses of antibiotics.
我们开发并比较了两种数学模型,用于模拟正常细胞和持久细胞之间的表型转换率在不同底物浓度和抗生素存在条件下的变化。这些模型可以用于模拟生物膜等存在浓度梯度的环境中持久细胞的形成。我们的模型是对 Balaban 等人(2004 年,《科学》305:1622)之前开发的正常和持久细胞群体动力学模型的扩展。我们使用从肺炎克雷伯氏菌浮游批次培养物中定期采集的样品在环丙沙星处理后的实验致死曲线来校准模型的参数。我们的转换模型准确地再现了浮游批次培养物和抗生素处理下正常和持久种群的动力学。结果表明,这些模型在很大的底物浓度范围内以及零剂量或高剂量抗生素的情况下都是有效的。