Suppr超能文献

富含色氨酸的短肽中WWW基序的π构型对于靶向细菌膜、破坏预先形成的生物膜以及杀死耐甲氧西林金黄色葡萄球菌至关重要。

The π Configuration of the WWW Motif of a Short Trp-Rich Peptide Is Critical for Targeting Bacterial Membranes, Disrupting Preformed Biofilms, and Killing Methicillin-Resistant Staphylococcus aureus.

作者信息

Zarena D, Mishra Biswajit, Lushnikova Tamara, Wang Fangyu, Wang Guangshun

机构信息

Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center , 986495 Nebraska Medical Center, Omaha, Nebraska 68198-6495, United States.

Department of Physics, JNTUA College of Engineering , Anantapur 515002, India.

出版信息

Biochemistry. 2017 Aug 8;56(31):4039-4043. doi: 10.1021/acs.biochem.7b00456. Epub 2017 Jul 26.

Abstract

Tryptophan-rich peptides, being short and suitable for large-scale chemical synthesis, are attractive candidates for developing a new generation of antimicrobials to combat antibiotic-resistant bacteria (superbugs). Although there are numerous pictures of the membrane-bound structure of a single tryptophan (W), how multiple Trp amino acids assemble themselves and interact with bacterial membranes is poorly understood. This communication presents the three-dimensional structure of an eight-residue Trp-rich peptide (WWWLRKIW-NH with 50% W) determined by the improved two-dimensional nuclear magnetic resonance method, which includes the measurements of C and N chemical shifts at natural abundance. This peptide forms the shortest two-turn helix with a distinct amphipathic feature. A unique structural arrangement is identified for the Trp triplet, WWW, that forms a π configuration with W2 as the horizontal bar and W1/W3 forming the two legs. An arginine scan reveals that the WWW motif is essential for killing methicillin-resistant Staphylococcus aureus USA300 and disrupting preformed bacterial biofilms. This unique π configuration for the WWW motif is stabilized by aromatic-aromatic interactions as evidenced by ring current shifts as well as nuclear Overhauser effects. Because the WWW motif is maintained, a change of I7 to R led to a potent antimicrobial and antibiofilm peptide with 4-fold improvement in cell selectivity. Collectively, this study elucidated the structural basis of antibiofilm activity of the peptide, identified a better peptide candidate via structure-activity relationship studies, and laid the foundation for engineering future antibiotics based on the WWW motif.

摘要

富含色氨酸的肽段短小且适合大规模化学合成,是开发新一代抗微生物药物以对抗抗生素耐药细菌(超级细菌)的有吸引力的候选物。尽管有许多单个色氨酸(W)膜结合结构的图片,但多个色氨酸氨基酸如何组装并与细菌膜相互作用却知之甚少。本通讯展示了通过改进的二维核磁共振方法确定的一种八残基富含色氨酸肽(WWWLRKIW-NH,含50%的W)的三维结构,其中包括在天然丰度下对碳和氮化学位移的测量。该肽形成了具有明显两亲性特征的最短双螺旋。对于色氨酸三联体WWW,鉴定出一种独特的结构排列,它形成一种π构型,以W2为横杆,W1/W3为两条腿。精氨酸扫描表明,WWW基序对于杀死耐甲氧西林金黄色葡萄球菌USA300和破坏预先形成的细菌生物膜至关重要。如环电流位移和核Overhauser效应所证明的,WWW基序这种独特的π构型通过芳香-芳香相互作用得以稳定。由于WWW基序得以保留,将I7替换为R导致产生了一种强效的抗微生物和抗生物膜肽,其细胞选择性提高了4倍。总体而言,本研究阐明了该肽抗生物膜活性的结构基础,通过构效关系研究鉴定出了更好的肽候选物,并为基于WWW基序设计未来的抗生素奠定了基础。

相似文献

2
5
Hydrophobic residues are critical for the helix-forming, hemolytic and bactericidal activities of amphipathic antimicrobial peptide TP4.
PLoS One. 2017 Oct 17;12(10):e0186442. doi: 10.1371/journal.pone.0186442. eCollection 2017.
6
Antimicrobial and Antibiofilm Activities of Helical Antimicrobial Peptide Sequences Incorporating Metal-Binding Motifs.
Biochemistry. 2019 Sep 10;58(36):3802-3812. doi: 10.1021/acs.biochem.9b00440. Epub 2019 Aug 26.
8
Design and surface immobilization of short anti-biofilm peptides.
Acta Biomater. 2017 Feb;49:316-328. doi: 10.1016/j.actbio.2016.11.061. Epub 2016 Nov 30.
9
Targeting methicillin-resistant Staphylococcus aureus with short salt-resistant synthetic peptides.
Antimicrob Agents Chemother. 2014 Jul;58(7):4113-22. doi: 10.1128/AAC.02578-14. Epub 2014 May 5.
10
Two distinct amphipathic peptide antibiotics with systemic efficacy.
Proc Natl Acad Sci U S A. 2020 Aug 11;117(32):19446-19454. doi: 10.1073/pnas.2005540117. Epub 2020 Jul 28.

引用本文的文献

1
Arginine-Tryptophan Peptides Enhancing Antibacterial and Anticancer Effects of Ruthenium(II) Polypyridyl Complex Photosensitizers.
ACS Omega. 2025 Jul 21;10(29):31452-31465. doi: 10.1021/acsomega.5c00997. eCollection 2025 Jul 29.
2
Novel Nano Drug-Loaded Hydrogel Coatings for the Prevention and Treatment of CAUTI.
Adv Healthc Mater. 2024 Dec;13(30):e2401745. doi: 10.1002/adhm.202401745. Epub 2024 Aug 23.
3
Antimicrobial Peptides and Small Molecules Targeting the Cell Membrane of Staphylococcus aureus.
Microbiol Mol Biol Rev. 2023 Jun 28;87(2):e0003722. doi: 10.1128/mmbr.00037-22. Epub 2023 Apr 27.
4
Complex Networks Analyses of Antibiofilm Peptides: An Emerging Tool for Next-Generation Antimicrobials' Discovery.
Antibiotics (Basel). 2023 Apr 13;12(4):747. doi: 10.3390/antibiotics12040747.
5
Synthetic peptides that form nanostructured micelles have potent antibiotic and antibiofilm activity against polymicrobial infections.
Proc Natl Acad Sci U S A. 2023 Jan 24;120(4):e2219679120. doi: 10.1073/pnas.2219679120. Epub 2023 Jan 17.
6
Evaluation of Liberibacter Asiaticus Efflux Pump Inhibition by Antimicrobial Peptides.
Molecules. 2022 Dec 9;27(24):8729. doi: 10.3390/molecules27248729.
7
SCMRSA: a New Approach for Identifying and Analyzing Anti-MRSA Peptides Using Estimated Propensity Scores of Dipeptides.
ACS Omega. 2022 Sep 1;7(36):32653-32664. doi: 10.1021/acsomega.2c04305. eCollection 2022 Sep 13.
8
Biofilms: Formation, Research Models, Potential Targets, and Methods for Prevention and Treatment.
Adv Sci (Weinh). 2022 Oct;9(29):e2203291. doi: 10.1002/advs.202203291. Epub 2022 Aug 28.
9
Design and Evaluation of Short Bovine Lactoferrin-Derived Antimicrobial Peptides against Multidrug-Resistant .
Antibiotics (Basel). 2022 Aug 10;11(8):1085. doi: 10.3390/antibiotics11081085.

本文引用的文献

1
Atomic Force Microscopy Study of the Interactions of Indolicidin with Model Membranes and DNA.
Methods Mol Biol. 2017;1548:201-215. doi: 10.1007/978-1-4939-6737-7_14.
2
Design and surface immobilization of short anti-biofilm peptides.
Acta Biomater. 2017 Feb;49:316-328. doi: 10.1016/j.actbio.2016.11.061. Epub 2016 Nov 30.
3
APD3: the antimicrobial peptide database as a tool for research and education.
Nucleic Acids Res. 2016 Jan 4;44(D1):D1087-93. doi: 10.1093/nar/gkv1278. Epub 2015 Nov 23.
4
Database-Guided Discovery of Potent Peptides to Combat HIV-1 or Superbugs.
Pharmaceuticals (Basel). 2013 May 27;6(6):728-58. doi: 10.3390/ph6060728.
5
Structural characterization of the cyclic cystine ladder motif of θ-defensins.
Biochemistry. 2012 Dec 4;51(48):9718-26. doi: 10.1021/bi301363a. Epub 2012 Nov 20.
7
Boosting antimicrobial peptides by hydrophobic oligopeptide end tags.
J Biol Chem. 2009 Jun 26;284(26):17584-94. doi: 10.1074/jbc.M109.011650. Epub 2009 Apr 27.
8
Structures of human host defense cathelicidin LL-37 and its smallest antimicrobial peptide KR-12 in lipid micelles.
J Biol Chem. 2008 Nov 21;283(47):32637-43. doi: 10.1074/jbc.M805533200. Epub 2008 Sep 25.
9
Determination of solution structure and lipid micelle location of an engineered membrane peptide by using one NMR experiment and one sample.
Biochim Biophys Acta. 2007 Dec;1768(12):3271-81. doi: 10.1016/j.bbamem.2007.08.005. Epub 2007 Aug 24.
10
Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies.
Nat Biotechnol. 2006 Dec;24(12):1551-7. doi: 10.1038/nbt1267.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验