Suppr超能文献

连接组蛋白和染色质凝聚依赖于核小体环境。

Dependence of the Linker Histone and Chromatin Condensation on the Nucleosome Environment.

机构信息

Big Blue Genomics , Vojvode Brane 32, 11000 Belgrade, Serbia.

Department of Chemistry, New York University , 1001 Silver, 100 Washington Square East, New York, New York 10003, United States.

出版信息

J Phys Chem B. 2017 Aug 24;121(33):7823-7832. doi: 10.1021/acs.jpcb.7b04917. Epub 2017 Aug 11.

Abstract

The linker histone (LH), an auxiliary protein that can bind to chromatin and interact with the linker DNA to form stem motifs, is a key element of chromatin compaction. By affecting the chromatin condensation level, it also plays an active role in gene expression. However, the presence and variable concentration of LH in chromatin fibers with different DNA linker lengths indicate that its folding and condensation are highly adaptable and dependent on the immediate nucleosome environment. Recent experimental studies revealed that the behavior of LH in mononucleosomes markedly differs from that in small nucleosome arrays, but the associated mechanism is unknown. Here we report a structural analysis of the behavior of LH in mononucleosomes and oligonucleosomes (2-6 nucleosomes) using mesoscale chromatin simulations. We show that the adapted stem configuration heavily depends on the strength of electrostatic interactions between LH and its parental DNA linkers, and that those interactions tend to be asymmetric in small oligonucleosome systems. Namely, LH in oligonucleosomes dominantly interacts with one DNA linker only, as opposed to mononucleosomes where LH has similar interactions with both linkers and forms a highly stable nucleosome stem. Although we show that the LH condensation depends sensitively on the electrostatic interactions with entering and exiting DNA linkers, other interactions, especially by nonparental cores and nonparental linkers, modulate the structural condensation by softening LH and thus making oligonucleosomes more flexible, in comparison to to mono- and dinucleosomes. We also find that the overall LH/chromatin interactions sensitively depend on the linker length because the linker length determines the maximal nucleosome stem length. For mononucleosomes with DNA linkers shorter than LH, LH condenses fully, while for DNA linkers comparable or longer than LH, the LH extension in mononucleosomes strongly follows the length of DNA linkers, unhampered by neighboring linker histones. Thus, LH is more condensed for mononucleosomes with short linkers, compared to oligonucleosomes, and its orientation is variable and highly environment-dependent. More generally, the work underscores the agility of LH whose folding dynamics critically controls genomic packaging and gene expression.

摘要

连接组蛋白(LH)是一种辅助蛋白,能够与染色质结合,并与连接 DNA 相互作用形成茎环结构,是染色质紧缩的关键元件。通过影响染色质的凝聚水平,它也在基因表达中发挥积极作用。然而,在具有不同 DNA 连接长度的染色质纤维中,LH 的存在和可变浓度表明其折叠和凝聚具有高度的适应性,并依赖于紧邻核小体的环境。最近的实验研究表明,LH 在单核小体中的行为明显不同于在小核小体阵列中的行为,但相关机制尚不清楚。在这里,我们使用介观染色质模拟报告了 LH 在单核小体和寡核小体(2-6 个核小体)中的行为的结构分析。我们表明,适应的茎环结构在很大程度上取决于 LH 与其亲本 DNA 连接子之间的静电相互作用的强度,并且这些相互作用在小寡核小体系统中往往是不对称的。也就是说,LH 在寡核小体中主要与一个 DNA 连接子相互作用,而在单核小体中,LH 与两个连接子具有相似的相互作用,并形成高度稳定的核小体茎。尽管我们表明 LH 的凝聚高度依赖于与进入和退出 DNA 连接子的静电相互作用,但其他相互作用,特别是非亲本核心和非亲本连接子的相互作用,通过软化 LH 来调节结构凝聚,从而使寡核小体比单核小体和二核小体更具柔韧性。我们还发现,总体 LH/染色质相互作用高度依赖于连接子长度,因为连接子长度决定了最大核小体茎长度。对于 DNA 连接子短于 LH 的单核小体,LH 完全凝聚,而对于 DNA 连接子可比或长于 LH 的单核小体,LH 在单核小体中的延伸强烈遵循 DNA 连接子的长度,不受相邻连接组蛋白的影响。因此,与寡核小体相比,具有短连接子的单核小体中的 LH 更凝聚,其取向是可变的,高度依赖于环境。更一般地说,这项工作强调了 LH 的灵活性,其折叠动力学对基因组包装和基因表达具有关键控制作用。

相似文献

1
Dependence of the Linker Histone and Chromatin Condensation on the Nucleosome Environment.
J Phys Chem B. 2017 Aug 24;121(33):7823-7832. doi: 10.1021/acs.jpcb.7b04917. Epub 2017 Aug 11.
2
Sensitive effect of linker histone binding mode and subtype on chromatin condensation.
Nucleic Acids Res. 2019 Jun 4;47(10):4948-4957. doi: 10.1093/nar/gkz234.
3
Dynamic condensation of linker histone C-terminal domain regulates chromatin structure.
Nucleic Acids Res. 2014 Jul;42(12):7553-60. doi: 10.1093/nar/gku491. Epub 2014 Jun 6.
4
Modeling studies of chromatin fiber structure as a function of DNA linker length.
J Mol Biol. 2010 Nov 12;403(5):777-802. doi: 10.1016/j.jmb.2010.07.057. Epub 2010 Aug 13.
5
Regulation of chromatin folding by conformational variations of nucleosome linker DNA.
Nucleic Acids Res. 2017 Sep 19;45(16):9372-9387. doi: 10.1093/nar/gkx562.
6
Chromatin structure-dependent conformations of the H1 CTD.
Nucleic Acids Res. 2016 Nov 2;44(19):9131-9141. doi: 10.1093/nar/gkw586. Epub 2016 Jun 30.
8
Chromatin structures condensed by linker histones.
Essays Biochem. 2019 Apr 23;63(1):75-87. doi: 10.1042/EBC20180056.
9
Flexible histone tails in a new mesoscopic oligonucleosome model.
Biophys J. 2006 Jul 1;91(1):133-50. doi: 10.1529/biophysj.106.083006. Epub 2006 Apr 7.
10
The Dynamic Influence of Linker Histone Saturation within the Poly-Nucleosome Array.
J Mol Biol. 2021 May 14;433(10):166902. doi: 10.1016/j.jmb.2021.166902. Epub 2021 Mar 2.

引用本文的文献

1
Physical modeling of nucleosome clustering in euchromatin resulting from interactions between epigenetic reader proteins.
Proc Natl Acad Sci U S A. 2024 Jun 25;121(26):e2317911121. doi: 10.1073/pnas.2317911121. Epub 2024 Jun 20.
2
From Nucleosomes to Compartments: Physicochemical Interactions Underlying Chromatin Organization.
Annu Rev Biophys. 2024 Jul;53(1):221-245. doi: 10.1146/annurev-biophys-030822-032650. Epub 2024 Jun 28.
3
An associative memory Hamiltonian model for DNA and nucleosomes.
PLoS Comput Biol. 2023 Mar 27;19(3):e1011013. doi: 10.1371/journal.pcbi.1011013. eCollection 2023 Mar.
4
The effects of RNA.DNA-DNA triple helices on nucleosome structures and dynamics.
Biophys J. 2023 Apr 4;122(7):1229-1239. doi: 10.1016/j.bpj.2023.02.013. Epub 2023 Feb 16.
5
Generation of dynamic three-dimensional genome structure through phase separation of chromatin.
Proc Natl Acad Sci U S A. 2022 May 31;119(22):e2109838119. doi: 10.1073/pnas.2109838119. Epub 2022 May 26.
7
Binding Dynamics of Disordered Linker Histone H1 with a Nucleosomal Particle.
J Mol Biol. 2021 Mar 19;433(6):166881. doi: 10.1016/j.jmb.2021.166881. Epub 2021 Feb 20.
8
Stability and folding pathways of tetra-nucleosome from six-dimensional free energy surface.
Nat Commun. 2021 Feb 17;12(1):1091. doi: 10.1038/s41467-021-21377-z.
9
DNA Condensation with a Boron-Containing Cationic Peptide for Modeling Boron Neutron Capture Therapy.
Radiat Phys Chem Oxf Engl 1993. 2020 Jan;166. doi: 10.1016/j.radphyschem.2019.108521. Epub 2019 Oct 10.
10
Emergence of chromatin hierarchical loops from protein disorder and nucleosome asymmetry.
Proc Natl Acad Sci U S A. 2020 Mar 31;117(13):7216-7224. doi: 10.1073/pnas.1910044117. Epub 2020 Mar 12.

本文引用的文献

1
Linking Chromatin Fibers to Gene Folding by Hierarchical Looping.
Biophys J. 2017 Feb 7;112(3):434-445. doi: 10.1016/j.bpj.2017.01.003. Epub 2017 Jan 31.
2
Chromatin structure-dependent conformations of the H1 CTD.
Nucleic Acids Res. 2016 Nov 2;44(19):9131-9141. doi: 10.1093/nar/gkw586. Epub 2016 Jun 30.
3
Computational strategies to address chromatin structure problems.
Phys Biol. 2016 Jun 25;13(3):035006. doi: 10.1088/1478-3975/13/3/035006.
4
Correlation among DNA Linker Length, Linker Histone Concentration, and Histone Tails in Chromatin.
Biophys J. 2016 Jun 7;110(11):2309-2319. doi: 10.1016/j.bpj.2016.04.024.
5
Mesoscale Modeling Reveals Hierarchical Looping of Chromatin Fibers Near Gene Regulatory Elements.
J Phys Chem B. 2016 Aug 25;120(33):8642-53. doi: 10.1021/acs.jpcb.6b03197. Epub 2016 Jun 16.
7
Hierarchical looping of zigzag nucleosome chains in metaphase chromosomes.
Proc Natl Acad Sci U S A. 2016 Feb 2;113(5):1238-43. doi: 10.1073/pnas.1518280113. Epub 2016 Jan 19.
8
Structural Mechanisms of Nucleosome Recognition by Linker Histones.
Mol Cell. 2015 Aug 20;59(4):628-38. doi: 10.1016/j.molcel.2015.06.025. Epub 2015 Jul 23.
10
Dynamic condensation of linker histone C-terminal domain regulates chromatin structure.
Nucleic Acids Res. 2014 Jul;42(12):7553-60. doi: 10.1093/nar/gku491. Epub 2014 Jun 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验