Big Blue Genomics , Vojvode Brane 32, 11000 Belgrade, Serbia.
Department of Chemistry, New York University , 1001 Silver, 100 Washington Square East, New York, New York 10003, United States.
J Phys Chem B. 2017 Aug 24;121(33):7823-7832. doi: 10.1021/acs.jpcb.7b04917. Epub 2017 Aug 11.
The linker histone (LH), an auxiliary protein that can bind to chromatin and interact with the linker DNA to form stem motifs, is a key element of chromatin compaction. By affecting the chromatin condensation level, it also plays an active role in gene expression. However, the presence and variable concentration of LH in chromatin fibers with different DNA linker lengths indicate that its folding and condensation are highly adaptable and dependent on the immediate nucleosome environment. Recent experimental studies revealed that the behavior of LH in mononucleosomes markedly differs from that in small nucleosome arrays, but the associated mechanism is unknown. Here we report a structural analysis of the behavior of LH in mononucleosomes and oligonucleosomes (2-6 nucleosomes) using mesoscale chromatin simulations. We show that the adapted stem configuration heavily depends on the strength of electrostatic interactions between LH and its parental DNA linkers, and that those interactions tend to be asymmetric in small oligonucleosome systems. Namely, LH in oligonucleosomes dominantly interacts with one DNA linker only, as opposed to mononucleosomes where LH has similar interactions with both linkers and forms a highly stable nucleosome stem. Although we show that the LH condensation depends sensitively on the electrostatic interactions with entering and exiting DNA linkers, other interactions, especially by nonparental cores and nonparental linkers, modulate the structural condensation by softening LH and thus making oligonucleosomes more flexible, in comparison to to mono- and dinucleosomes. We also find that the overall LH/chromatin interactions sensitively depend on the linker length because the linker length determines the maximal nucleosome stem length. For mononucleosomes with DNA linkers shorter than LH, LH condenses fully, while for DNA linkers comparable or longer than LH, the LH extension in mononucleosomes strongly follows the length of DNA linkers, unhampered by neighboring linker histones. Thus, LH is more condensed for mononucleosomes with short linkers, compared to oligonucleosomes, and its orientation is variable and highly environment-dependent. More generally, the work underscores the agility of LH whose folding dynamics critically controls genomic packaging and gene expression.
连接组蛋白(LH)是一种辅助蛋白,能够与染色质结合,并与连接 DNA 相互作用形成茎环结构,是染色质紧缩的关键元件。通过影响染色质的凝聚水平,它也在基因表达中发挥积极作用。然而,在具有不同 DNA 连接长度的染色质纤维中,LH 的存在和可变浓度表明其折叠和凝聚具有高度的适应性,并依赖于紧邻核小体的环境。最近的实验研究表明,LH 在单核小体中的行为明显不同于在小核小体阵列中的行为,但相关机制尚不清楚。在这里,我们使用介观染色质模拟报告了 LH 在单核小体和寡核小体(2-6 个核小体)中的行为的结构分析。我们表明,适应的茎环结构在很大程度上取决于 LH 与其亲本 DNA 连接子之间的静电相互作用的强度,并且这些相互作用在小寡核小体系统中往往是不对称的。也就是说,LH 在寡核小体中主要与一个 DNA 连接子相互作用,而在单核小体中,LH 与两个连接子具有相似的相互作用,并形成高度稳定的核小体茎。尽管我们表明 LH 的凝聚高度依赖于与进入和退出 DNA 连接子的静电相互作用,但其他相互作用,特别是非亲本核心和非亲本连接子的相互作用,通过软化 LH 来调节结构凝聚,从而使寡核小体比单核小体和二核小体更具柔韧性。我们还发现,总体 LH/染色质相互作用高度依赖于连接子长度,因为连接子长度决定了最大核小体茎长度。对于 DNA 连接子短于 LH 的单核小体,LH 完全凝聚,而对于 DNA 连接子可比或长于 LH 的单核小体,LH 在单核小体中的延伸强烈遵循 DNA 连接子的长度,不受相邻连接组蛋白的影响。因此,与寡核小体相比,具有短连接子的单核小体中的 LH 更凝聚,其取向是可变的,高度依赖于环境。更一般地说,这项工作强调了 LH 的灵活性,其折叠动力学对基因组包装和基因表达具有关键控制作用。