Suppr超能文献

作为 DNA 连接子长度的函数的染色质纤维结构的建模研究。

Modeling studies of chromatin fiber structure as a function of DNA linker length.

机构信息

Department of Chemistry, New York University, New York, NY 10003, USA.

出版信息

J Mol Biol. 2010 Nov 12;403(5):777-802. doi: 10.1016/j.jmb.2010.07.057. Epub 2010 Aug 13.

Abstract

Chromatin fibers encountered in various species and tissues are characterized by different nucleosome repeat lengths (NRLs) of the linker DNA connecting the nucleosomes. While single cellular organisms and rapidly growing cells with high protein production have short NRL ranging from 160 to 189 bp, mature cells usually have longer NRLs ranging between 190 and 220 bp. Recently, various experimental studies have examined the effect of NRL on the internal organization of chromatin fiber. Here, we investigate by mesoscale modeling of oligonucleosomes the folding patterns for different NRL, with and without linker histone (LH), under typical monovalent salt conditions using both one-start solenoid and two-start zigzag starting configurations. We find that short to medium NRL chromatin fibers (173 to 209 bp) with LH condense into zigzag structures and that solenoid-like features are viable only for longer NRLs (226 bp). We suggest that medium NRLs are more advantageous for packing and various levels of chromatin compaction throughout the cell cycle than their shortest and longest brethren; the former (short NRLs) fold into narrow fibers, while the latter (long NRLs) arrays do not easily lead to high packing ratios due to possible linker DNA bending. Moreover, we show that the LH has a small effect on the condensation of short-NRL arrays but has an important condensation effect on medium-NRL arrays, which have linker lengths similar to the LH lengths. Finally, we suggest that the medium-NRL species, with densely packed fiber arrangements, may be advantageous for epigenetic control because their histone tail modifications can have a greater effect compared to other fibers due to their more extensive nucleosome interaction network.

摘要

在不同物种和组织中遇到的染色质纤维的特征是连接核小体的连接 DNA 的核小体重复长度(NRL)不同。虽然单细胞生物和具有高蛋白质产生的快速生长的细胞具有短的 NRL,范围从 160 到 189 bp,成熟细胞通常具有较长的 NRL,范围在 190 到 220 bp 之间。最近,各种实验研究已经检查了 NRL 对染色质纤维内部组织的影响。在这里,我们使用单核小体和双螺旋起始的起始构型,在典型的单价盐条件下,通过寡核小体的介观建模研究了不同 NRL 的折叠模式,有无连接组蛋白(LH)。我们发现,带有 LH 的短至中等 NRL 染色质纤维(173 到 209 bp)凝结成锯齿状结构,只有较长的 NRL(226 bp)才具有类似螺旋的特征。我们认为,在细胞周期中,中 NRL 比最短和最长的 NRL 更有利于包装和各种水平的染色质紧缩;前者(短 NRL)折叠成狭窄的纤维,而后者(长 NRL)阵列由于可能的连接 DNA 弯曲不易导致高包装比。此外,我们表明,LH 对短 NRL 阵列的浓缩有很小的影响,但对中 NRL 阵列有重要的浓缩作用,中 NRL 阵列的连接长度与 LH 长度相似。最后,我们认为,具有密集纤维排列的中 NRL 物种可能有利于表观遗传控制,因为与其他纤维相比,其组蛋白尾部修饰可以产生更大的影响,因为它们具有更广泛的核小体相互作用网络。

相似文献

1
Modeling studies of chromatin fiber structure as a function of DNA linker length.
J Mol Biol. 2010 Nov 12;403(5):777-802. doi: 10.1016/j.jmb.2010.07.057. Epub 2010 Aug 13.
2
Chromatin fiber polymorphism triggered by variations of DNA linker lengths.
Proc Natl Acad Sci U S A. 2014 Jun 3;111(22):8061-6. doi: 10.1073/pnas.1315872111. Epub 2014 May 20.
3
Mesoscale simulations of two nucleosome-repeat length oligonucleosomes.
Phys Chem Chem Phys. 2009 Dec 7;11(45):10729-37. doi: 10.1039/b918629h. Epub 2009 Oct 20.
4
Sensitive effect of linker histone binding mode and subtype on chromatin condensation.
Nucleic Acids Res. 2019 Jun 4;47(10):4948-4957. doi: 10.1093/nar/gkz234.
5
Correlation among DNA Linker Length, Linker Histone Concentration, and Histone Tails in Chromatin.
Biophys J. 2016 Jun 7;110(11):2309-2319. doi: 10.1016/j.bpj.2016.04.024.
6
Dependence of the Linker Histone and Chromatin Condensation on the Nucleosome Environment.
J Phys Chem B. 2017 Aug 24;121(33):7823-7832. doi: 10.1021/acs.jpcb.7b04917. Epub 2017 Aug 11.
7
Nucleosome repeat length and linker histone stoichiometry determine chromatin fiber structure.
Proc Natl Acad Sci U S A. 2008 Jul 1;105(26):8872-7. doi: 10.1073/pnas.0802336105. Epub 2008 Jun 26.
8
Modelling and DNA topology of compact 2-start and 1-start chromatin fibres.
Nucleic Acids Res. 2019 Oct 10;47(18):9902-9924. doi: 10.1093/nar/gkz495.
9
The effect of linker histone's nucleosome binding affinity on chromatin unfolding mechanisms.
Biophys J. 2011 Oct 5;101(7):1670-80. doi: 10.1016/j.bpj.2011.07.044.
10
Short nucleosome repeats impose rotational modulations on chromatin fibre folding.
EMBO J. 2012 May 16;31(10):2416-26. doi: 10.1038/emboj.2012.80. Epub 2012 Mar 30.

引用本文的文献

2
Regulation of Genome Architecture in Huntington's Disease.
Biochemistry. 2025 May 6;64(9):2100-2115. doi: 10.1021/acs.biochem.5c00029. Epub 2025 Apr 27.
3
4
Structural insights into the cooperative nucleosome recognition and chromatin opening by FOXA1 and GATA4.
Mol Cell. 2024 Aug 22;84(16):3061-3079.e10. doi: 10.1016/j.molcel.2024.07.016. Epub 2024 Aug 8.
5
Regulation of chromatin architecture by protein binding: insights from molecular modeling.
Biophys Rev. 2024 May 9;16(3):331-343. doi: 10.1007/s12551-024-01195-5. eCollection 2024 Jun.
6
Physical modeling of nucleosome clustering in euchromatin resulting from interactions between epigenetic reader proteins.
Proc Natl Acad Sci U S A. 2024 Jun 25;121(26):e2317911121. doi: 10.1073/pnas.2317911121. Epub 2024 Jun 20.
7
Genome wide nucleosome landscape shapes 3D chromatin organization.
Sci Adv. 2024 Jun 7;10(23):eadn2955. doi: 10.1126/sciadv.adn2955.
9
Regulation of chromatin architecture by transcription factor binding.
Elife. 2024 Jan 19;12:RP91320. doi: 10.7554/eLife.91320.
10
Hi-BDiSCO: folding 3D mesoscale genome structures from Hi-C data using brownian dynamics.
Nucleic Acids Res. 2024 Jan 25;52(2):583-599. doi: 10.1093/nar/gkad1121.

本文引用的文献

1
Chromatin ionic atmosphere analyzed by a mesoscale electrostatic approach.
Biophys J. 2010 Oct 20;99(8):2587-96. doi: 10.1016/j.bpj.2010.08.023.
2
Mesoscale simulations of two nucleosome-repeat length oligonucleosomes.
Phys Chem Chem Phys. 2009 Dec 7;11(45):10729-37. doi: 10.1039/b918629h. Epub 2009 Oct 20.
3
Dynamics and function of compact nucleosome arrays.
Nat Struct Mol Biol. 2009 Sep;16(9):938-44. doi: 10.1038/nsmb.1650. Epub 2009 Aug 23.
4
Evidence for heteromorphic chromatin fibers from analysis of nucleosome interactions.
Proc Natl Acad Sci U S A. 2009 Aug 11;106(32):13317-22. doi: 10.1073/pnas.0903280106. Epub 2009 Jul 27.
5
Single-molecule force spectroscopy reveals a highly compliant helical folding for the 30-nm chromatin fiber.
Nat Struct Mol Biol. 2009 May;16(5):534-40. doi: 10.1038/nsmb.1590. Epub 2009 Apr 19.
8
The effect of internucleosomal interaction on folding of the chromatin fiber.
Biophys J. 2008 Oct;95(8):3677-91. doi: 10.1529/biophysj.107.120543. Epub 2008 Jul 25.
9
Nucleosome repeat length and linker histone stoichiometry determine chromatin fiber structure.
Proc Natl Acad Sci U S A. 2008 Jul 1;105(26):8872-7. doi: 10.1073/pnas.0802336105. Epub 2008 Jun 26.
10
Coarse-grained force field for the nucleosome from self-consistent multiscaling.
J Comput Chem. 2008 Jul 15;29(9):1429-39. doi: 10.1002/jcc.20902.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验