Suppr超能文献

Hi-BDiSCO:使用布朗动力学从 Hi-C 数据中折叠 3D 介观基因组结构。

Hi-BDiSCO: folding 3D mesoscale genome structures from Hi-C data using brownian dynamics.

机构信息

Department of Chemistry, 100 Washington Square East, Silver Building, New York University, New York, NY 10003, USA.

Simons Center for Computational Physical Chemistry, 24 Waverly Place, Silver Building, New York University, New York, NY 10003, USA.

出版信息

Nucleic Acids Res. 2024 Jan 25;52(2):583-599. doi: 10.1093/nar/gkad1121.

Abstract

The structure and dynamics of the eukaryotic genome are intimately linked to gene regulation and transcriptional activity. Many chromosome conformation capture experiments like Hi-C have been developed to detect genome-wide contact frequencies and quantify loop/compartment structures for different cellular contexts and time-dependent processes. However, a full understanding of these events requires explicit descriptions of representative chromatin and chromosome configurations. With the exponentially growing amount of data from Hi-C experiments, many methods for deriving 3D structures from contact frequency data have been developed. Yet, most reconstruction methods use polymer models with low resolution to predict overall genome structure. Here we present a Brownian Dynamics (BD) approach termed Hi-BDiSCO for producing 3D genome structures from Hi-C and Micro-C data using our mesoscale-resolution chromatin model based on the Discrete Surface Charge Optimization (DiSCO) model. Our approach integrates reconstruction with chromatin simulations at nucleosome resolution with appropriate biophysical parameters. Following a description of our protocol, we present applications to the NXN, HOXC, HOXA and Fbn2 mouse genes ranging in size from 50 to 100 kb. Such nucleosome-resolution genome structures pave the way for pursuing many biomedical applications related to the epigenomic regulation of chromatin and control of human disease.

摘要

真核生物基因组的结构和动态与基因调控和转录活性密切相关。许多染色体构象捕获实验,如 Hi-C,已经被开发出来,以检测全基因组的接触频率,并量化不同细胞环境和时间依赖过程中的环/隔室结构。然而,要全面了解这些事件,需要对有代表性的染色质和染色体构型进行明确描述。随着 Hi-C 实验产生的数据呈指数级增长,已经开发出许多从接触频率数据中推导出 3D 结构的方法。然而,大多数重建方法使用低分辨率的聚合物模型来预测整体基因组结构。在这里,我们提出了一种布朗动力学(BD)方法,称为 Hi-BDiSCO,用于使用我们基于离散表面电荷优化(DiSCO)模型的介观分辨率染色质模型,从 Hi-C 和 Micro-C 数据中生成 3D 基因组结构。我们的方法将重建与核小体分辨率的染色质模拟相结合,使用适当的生物物理参数。在描述我们的方案之后,我们展示了对大小在 50 到 100kb 之间的 NXN、HOXC、HOXA 和 Fbn2 小鼠基因的应用。这种核小体分辨率的基因组结构为研究与染色质表观基因组调控和人类疾病控制相关的许多生物医学应用铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9550/10810283/ade35fe049f5/gkad1121figgra1.jpg

相似文献

1
Hi-BDiSCO: folding 3D mesoscale genome structures from Hi-C data using brownian dynamics.
Nucleic Acids Res. 2024 Jan 25;52(2):583-599. doi: 10.1093/nar/gkad1121.
2
ProbC: joint modeling of epigenome and transcriptome effects in 3D genome.
BMC Genomics. 2022 Apr 9;23(1):287. doi: 10.1186/s12864-022-08498-5.
3
Efficient Hi-C inversion facilitates chromatin folding mechanism discovery and structure prediction.
Biophys J. 2023 Sep 5;122(17):3425-3438. doi: 10.1016/j.bpj.2023.07.017. Epub 2023 Jul 26.
4
Mapping Mammalian 3D Genomes by Micro-C.
Methods Mol Biol. 2022;2532:51-71. doi: 10.1007/978-1-0716-2497-5_4.
5
Reconstruction of 3D genome architecture via a two-stage algorithm.
BMC Bioinformatics. 2015 Nov 9;16:373. doi: 10.1186/s12859-015-0799-2.
6
Techniques for and challenges in reconstructing 3D genome structures from 2D chromosome conformation capture data.
Curr Opin Cell Biol. 2023 Aug;83:102209. doi: 10.1016/j.ceb.2023.102209. Epub 2023 Jul 26.
7
Hi-C 3.0: Improved Protocol for Genome-Wide Chromosome Conformation Capture.
Curr Protoc. 2021 Jul;1(7):e198. doi: 10.1002/cpz1.198.
8
Chromatin 3D structure reconstruction with consideration of adjacency relationship among genomic loci.
BMC Bioinformatics. 2020 Jul 1;21(1):272. doi: 10.1186/s12859-020-03612-4.
9
Transferable model for chromosome architecture.
Proc Natl Acad Sci U S A. 2016 Oct 25;113(43):12168-12173. doi: 10.1073/pnas.1613607113. Epub 2016 Sep 29.
10
Brownian dynamics simulations of mesoscale chromatin fibers.
Biophys J. 2023 Jul 25;122(14):2884-2897. doi: 10.1016/j.bpj.2022.09.013. Epub 2022 Sep 17.

引用本文的文献

1
The challenge of chromatin model comparison and validation: A project from the first international 4D Nucleome Hackathon.
PLoS Comput Biol. 2025 Aug 19;21(8):e1013358. doi: 10.1371/journal.pcbi.1013358. eCollection 2025 Aug.
2
3
Phase Space Invaders' podcast episode with Tamar Schlick: a trajectory from mathematics to biology.
Biophys Rev. 2025 Jan 28;17(1):15-23. doi: 10.1007/s12551-025-01271-4. eCollection 2025 Feb.
5
Advancements and future directions in single-cell Hi-C based 3D chromatin modeling.
Comput Struct Biotechnol J. 2024 Oct 3;23:3549-3558. doi: 10.1016/j.csbj.2024.09.026. eCollection 2024 Dec.
7
Techniques for and challenges in reconstructing 3D genome structures from 2D chromosome conformation capture data.
Curr Opin Cell Biol. 2023 Aug;83:102209. doi: 10.1016/j.ceb.2023.102209. Epub 2023 Jul 26.

本文引用的文献

1
Techniques for and challenges in reconstructing 3D genome structures from 2D chromosome conformation capture data.
Curr Opin Cell Biol. 2023 Aug;83:102209. doi: 10.1016/j.ceb.2023.102209. Epub 2023 Jul 26.
2
RNA polymerase II dynamics shape enhancer-promoter interactions.
Nat Genet. 2023 Aug;55(8):1370-1380. doi: 10.1038/s41588-023-01442-7. Epub 2023 Jul 10.
3
Chromatin alternates between A and B compartments at kilobase scale for subgenic organization.
Nat Commun. 2023 Jun 6;14(1):3303. doi: 10.1038/s41467-023-38429-1.
4
Region Capture Micro-C reveals coalescence of enhancers and promoters into nested microcompartments.
Nat Genet. 2023 Jun;55(6):1048-1056. doi: 10.1038/s41588-023-01391-1. Epub 2023 May 8.
5
Genome modeling: From chromatin fibers to genes.
Curr Opin Struct Biol. 2023 Feb;78:102506. doi: 10.1016/j.sbi.2022.102506. Epub 2022 Dec 26.
6
Every gene everywhere all at once: High-precision measurement of 3D chromosome architecture with single-cell Hi-C.
Front Mol Biosci. 2022 Oct 6;9:959688. doi: 10.3389/fmolb.2022.959688. eCollection 2022.
7
MiOS, an integrated imaging and computational strategy to model gene folding with nucleosome resolution.
Nat Struct Mol Biol. 2022 Oct;29(10):1011-1023. doi: 10.1038/s41594-022-00839-y. Epub 2022 Oct 11.
8
A review and performance evaluation of clustering frameworks for single-cell Hi-C data.
Brief Bioinform. 2022 Nov 19;23(6). doi: 10.1093/bib/bbac385.
9
Brownian dynamics simulations of mesoscale chromatin fibers.
Biophys J. 2023 Jul 25;122(14):2884-2897. doi: 10.1016/j.bpj.2022.09.013. Epub 2022 Sep 17.
10
The integrated comprehension of lncRNA HOXA-AS3 implication on human diseases.
Clin Transl Oncol. 2022 Dec;24(12):2342-2350. doi: 10.1007/s12094-022-02920-w. Epub 2022 Aug 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验