Suppr超能文献

从二维染色体构象捕获数据重建三维基因组结构的技术和挑战。

Techniques for and challenges in reconstructing 3D genome structures from 2D chromosome conformation capture data.

机构信息

Department of Chemistry, New York University, 100 Washington Square East, Silver Building, New York, 10003, NY, USA; Simons Center for Computational Physical Chemistry, New York University, 24 Waverly Place, Silver Building, New York, NY, 10003, USA.

Department of Chemistry, New York University, 100 Washington Square East, Silver Building, New York, 10003, NY, USA; Courant Institute of Mathematical Sciences, New York University, 251 Mercer St., New York, 10012, NY, USA; New York University-East China Normal University Center for Computational Chemistry, New York University Shanghai, Room 340, Geography Building, 3663 North Zhongshan Road, Shanghai, 200122, China; Simons Center for Computational Physical Chemistry, New York University, 24 Waverly Place, Silver Building, New York, NY, 10003, USA.

出版信息

Curr Opin Cell Biol. 2023 Aug;83:102209. doi: 10.1016/j.ceb.2023.102209. Epub 2023 Jul 26.

Abstract

Chromosome conformation capture technologies that provide frequency information for contacts between genomic regions have been crucial for increasing our understanding of genome folding and regulation. However, such data do not provide direct evidence of the spatial 3D organization of chromatin. In this opinion article, we discuss the development and application of computational methods to reconstruct chromatin 3D structures from experimental 2D contact data, highlighting how such modeling provides biological insights and can suggest mechanisms anchored to experimental data. By applying different reconstruction methods to the same contact data, we illustrate some state-of-the-art of these techniques and discuss our gene resolution approach based on Brownian dynamics and Monte Carlo sampling.

摘要

染色体构象捕获技术为基因组区域之间的接触频率信息提供了重要支持,从而帮助我们加深了对基因组折叠和调控的理解。然而,此类数据并不能为染色质的空间 3D 结构提供直接证据。在这篇观点文章中,我们讨论了开发和应用计算方法,从实验的 2D 接触数据中重建染色质 3D 结构的问题,强调了这种建模如何提供生物学见解,并可以根据实验数据提出机制。通过将不同的重建方法应用于相同的接触数据,我们举例说明了这些技术的最新进展,并讨论了我们基于布朗动力学和蒙特卡罗抽样的基因分辨率方法。

相似文献

1
Techniques for and challenges in reconstructing 3D genome structures from 2D chromosome conformation capture data.
Curr Opin Cell Biol. 2023 Aug;83:102209. doi: 10.1016/j.ceb.2023.102209. Epub 2023 Jul 26.
3
Bayesian inference of chromatin structure ensembles from population-averaged contact data.
Proc Natl Acad Sci U S A. 2020 Apr 7;117(14):7824-7830. doi: 10.1073/pnas.1910364117. Epub 2020 Mar 19.
4
Reconstruction of 3D genome architecture via a two-stage algorithm.
BMC Bioinformatics. 2015 Nov 9;16:373. doi: 10.1186/s12859-015-0799-2.
5
The era of 3D and spatial genomics.
Trends Genet. 2022 Oct;38(10):1062-1075. doi: 10.1016/j.tig.2022.05.010. Epub 2022 Jun 6.
6
The macro and micro of chromosome conformation capture.
Wiley Interdiscip Rev Dev Biol. 2021 Nov;10(6):e395. doi: 10.1002/wdev.395. Epub 2020 Sep 28.
7
Chromatin 3D structure reconstruction with consideration of adjacency relationship among genomic loci.
BMC Bioinformatics. 2020 Jul 1;21(1):272. doi: 10.1186/s12859-020-03612-4.
8
Reconstructing spatial organizations of chromosomes through manifold learning.
Nucleic Acids Res. 2018 May 4;46(8):e50. doi: 10.1093/nar/gky065.
9
Hi-BDiSCO: folding 3D mesoscale genome structures from Hi-C data using brownian dynamics.
Nucleic Acids Res. 2024 Jan 25;52(2):583-599. doi: 10.1093/nar/gkad1121.

引用本文的文献

1
pC-SAC: A method for high-resolution 3D genome reconstruction from low-resolution Hi-C data.
Nucleic Acids Res. 2025 Apr 10;53(7). doi: 10.1093/nar/gkaf289.
2
Phase Space Invaders' podcast episode with Tamar Schlick: a trajectory from mathematics to biology.
Biophys Rev. 2025 Jan 28;17(1):15-23. doi: 10.1007/s12551-025-01271-4. eCollection 2025 Feb.
3
Reconstruction of the real 3D shape of the SARS-CoV-2 virus.
Biophys J. 2024 May 21;123(10):1297-1310. doi: 10.1016/j.bpj.2024.04.019. Epub 2024 May 6.
4
Genome structural dynamics: insights from Gaussian network analysis of Hi-C data.
Brief Funct Genomics. 2024 Sep 27;23(5):525-537. doi: 10.1093/bfgp/elae014.
5
Hi-BDiSCO: folding 3D mesoscale genome structures from Hi-C data using brownian dynamics.
Nucleic Acids Res. 2024 Jan 25;52(2):583-599. doi: 10.1093/nar/gkad1121.

本文引用的文献

1
Hi-BDiSCO: folding 3D mesoscale genome structures from Hi-C data using brownian dynamics.
Nucleic Acids Res. 2024 Jan 25;52(2):583-599. doi: 10.1093/nar/gkad1121.
3
HiC-GNN: A generalizable model for 3D chromosome reconstruction using graph convolutional neural networks.
Comput Struct Biotechnol J. 2022 Dec 31;21:812-836. doi: 10.1016/j.csbj.2022.12.051. eCollection 2023.
4
Every gene everywhere all at once: High-precision measurement of 3D chromosome architecture with single-cell Hi-C.
Front Mol Biosci. 2022 Oct 6;9:959688. doi: 10.3389/fmolb.2022.959688. eCollection 2022.
5
Normalization and de-noising of single-cell Hi-C data with BandNorm and scVI-3D.
Genome Biol. 2022 Oct 17;23(1):222. doi: 10.1186/s13059-022-02774-z.
6
MiOS, an integrated imaging and computational strategy to model gene folding with nucleosome resolution.
Nat Struct Mol Biol. 2022 Oct;29(10):1011-1023. doi: 10.1038/s41594-022-00839-y. Epub 2022 Oct 11.
8
Reconstruct high-resolution 3D genome structures for diverse cell-types using FLAMINGO.
Nat Commun. 2022 May 12;13(1):2645. doi: 10.1038/s41467-022-30270-2.
10
Normalization of Chromosome Contact Maps: Matrix Balancing and Visualization.
Methods Mol Biol. 2022;2301:1-15. doi: 10.1007/978-1-0716-1390-0_1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验