Suppr超能文献

Na1.5 混合综合征突变体的钙敏感性差异。

Differential calcium sensitivity in Na 1.5 mixed syndrome mutants.

机构信息

Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada.

LIRYC Institute, Division of Pediatric Cardiology, Haut-Lévèque Hospital, Bordeaux University, Bordeaux, France.

出版信息

J Physiol. 2017 Sep 15;595(18):6165-6186. doi: 10.1113/JP274536. Epub 2017 Aug 20.

Abstract

KEY POINTS

SCN5a mutations may express gain-of-function (Long QT Syndrome-3), loss-of-function (Brugada Syndrome 1) or both (mixed syndromes), depending on the mutation and environmental triggers. One such trigger may be an increase in cytosolic calcium, accompanying exercise. Many mixed syndromes mutants, including ∆KPQ, E1784K, 1795insD and Q1909R, are found in calcium-sensitive regions. Elevated cytosolic calcium attenuates gain-of-function properties in ∆KPQ, 1795insD and Q1909R, but not in E1784K. By contrast, elevated cytosolic calcium further exacerbates gain-of-function in E1784K by destabilizing slow inactivation. Action potential modelling, using a modified O'Hara Rudy model, suggests that elevated heart rate rescues action potential duration in ∆KPQ, 1795insD and Q1909R, but not in E1784K. Action potential simulations suggest that E1784K carriers have an increased intracellular sodium-to-calcium ratio under bradycardia and tachycardia conditions. Elevated cytosolic calcium, which is common during high heart rates, ameliorates or exacerbates the mixed syndrome phenotype depending on the genetic signature.

ABSTRACT

Inherited arrhythmias may arise from mutations in the gene for SCN5a, which encodes the cardiac voltage-gated sodium channel, Na 1.5. Mutants in Na 1.5 result in Brugada Syndrome (BrS1), Long-QT Syndrome (LQT3) or mixed syndromes (an overlap of BrS1/LQT3). Exercise is a potential arrhythmogenic trigger in mixed syndromes. We aimed to determine the effects of elevated cytosolic calcium, which is common during exercise, in mixed syndrome Na 1.5 mutants. We used whole-cell patch clamp to assess the biophysical properties of Na 1.5 wild-type (WT), ∆KPQ, E1784K, 1795insD and Q1909R mutants in human embryonic kidney 293 cells transiently transfected with the Na 1.5 α subunit (WT or mutants), β1 subunit and enhanced green fluorescent protein. Voltage-dependence and kinetics were measured at cytosolic calcium levels of approximately 0, 500 and 2500 nm. In silico, action potential (AP) model simulations were performed using a modified O'Hara Rudy model. Elevated cytosolic calcium attenuates the late sodium current in ∆KPQ, 1795insD and Q1909R, but not in E1784K. Elevated cytosolic calcium restores steady-state slow inactivation (SSSI) to the WT-form in Q1909R, but depolarized SSSI in E1784K. Our AP simulations showed a frequency-dependent reduction of AP duration in ∆KPQ, 1795insD and Q1909R carriers. In E1784K, AP duration is relatively prolonged at both low and high heart rates, resulting in a sodium overload. Cellular perturbations during exercise may affect BrS1/LQT3 patients differently depending on their individual genetic signature. Thus, exercise may be therapeutic or may be an arrhythmogenic trigger in some SCN5a patients.

摘要

要点

SCN5a 突变可能表现出功能获得(长 QT 综合征 3 型)、功能丧失(Brugada 综合征 1 型)或两者兼而有之(混合综合征),具体取决于突变和环境触发因素。一个这样的触发因素可能是伴随运动增加的细胞质钙。许多混合综合征突变体,包括 ∆KPQ、E1784K、1795insD 和 Q1909R,都存在于钙敏感区域。升高的细胞质钙减弱了 ∆KPQ、1795insD 和 Q1909R 中的功能获得特性,但不能减弱 E1784K 中的功能获得特性。相比之下,升高的细胞质钙通过不稳定慢失活进一步加剧 E1784K 中的功能获得。使用改良的 O'Hara Rudy 模型进行动作电位建模表明,升高的心率可挽救 ∆KPQ、1795insD 和 Q1909R 中的动作电位持续时间,但不能挽救 E1784K 中的动作电位持续时间。动作电位模拟表明,在心动过缓和心动过速条件下,E1784K 携带者的细胞内钠钙比值增加。在高心率期间常见的升高的细胞质钙取决于遗传特征,可改善或加剧混合综合征表型。

摘要

遗传性心律失常可能源于编码心脏电压门控钠通道 Na 1.5 的 SCN5a 基因突变。Na 1.5 中的突变导致 Brugada 综合征(BrS1)、长 QT 综合征(LQT3)或混合综合征(BrS1/LQT3 的重叠)。运动是混合综合征的潜在致心律失常触发因素。我们旨在确定在运动过程中常见的升高的细胞质钙对混合综合征 Na 1.5 突变体的影响。我们使用全细胞膜片钳技术评估人类胚胎肾 293 细胞中 Na 1.5 野生型(WT)、∆KPQ、E1784K、1795insD 和 Q1909R 突变体的生物物理特性,这些细胞瞬时转染了 Na 1.5 α 亚基(WT 或突变体)、β1 亚基和增强型绿色荧光蛋白。在细胞质钙水平约为 0、500 和 2500nm 时测量电压依赖性和动力学。在计算机上,使用改良的 O'Hara Rudy 模型进行动作电位(AP)模型模拟。升高的细胞质钙减弱了 ∆KPQ、1795insD 和 Q1909R 中的晚期钠电流,但不能减弱 E1784K 中的晚期钠电流。升高的细胞质钙使 Q1909R 中的稳态慢失活(SSSI)恢复到 WT 形式,但使 E1784K 中的 SSSI 去极化。我们的 AP 模拟表明,∆KPQ、1795insD 和 Q1909R 携带者的 AP 持续时间随频率呈依赖性降低。在 E1784K 中,AP 持续时间在低心率和高心率时都相对延长,导致钠过载。运动过程中的细胞扰动可能会根据患者的个体遗传特征对 BrS1/LQT3 患者产生不同的影响。因此,运动可能是治疗性的,也可能是某些 SCN5a 患者的致心律失常触发因素。

相似文献

1
Differential calcium sensitivity in Na 1.5 mixed syndrome mutants.
J Physiol. 2017 Sep 15;595(18):6165-6186. doi: 10.1113/JP274536. Epub 2017 Aug 20.
2
The efficacy of Ranolazine on E1784K is altered by temperature and calcium.
Sci Rep. 2018 Feb 26;8(1):3643. doi: 10.1038/s41598-018-22033-1.
3
Differential thermosensitivity in mixed syndrome cardiac sodium channel mutants.
J Physiol. 2015 Sep 15;593(18):4201-23. doi: 10.1113/JP270139. Epub 2015 Aug 12.
5
Gating-dependent mechanisms for flecainide action in SCN5A-linked arrhythmia syndromes.
Circulation. 2001 Sep 4;104(10):1200-5. doi: 10.1161/hc3501.093797.

引用本文的文献

1
Preclinical Models of Cardiac Disease: A Comprehensive Overview for Clinical Scientists.
Cardiovasc Eng Technol. 2024 Apr;15(2):232-249. doi: 10.1007/s13239-023-00707-w. Epub 2024 Jan 16.
2
Multi-site validation of a functional assay to adjudicate Brugada Syndrome-associated variants.
medRxiv. 2023 Dec 20:2023.12.19.23299592. doi: 10.1101/2023.12.19.23299592.
3
Diagnostic yield and variant reassessment in the genes encoding Nav1.5 channel in Russian patients with Brugada syndrome.
Front Pharmacol. 2022 Aug 24;13:984299. doi: 10.3389/fphar.2022.984299. eCollection 2022.
4
Gene variant effects across sodium channelopathies predict function and guide precision therapy.
Brain. 2022 Dec 19;145(12):4275-4286. doi: 10.1093/brain/awac006.
5
Calmodulin Interactions with Voltage-Gated Sodium Channels.
Int J Mol Sci. 2021 Sep 10;22(18):9798. doi: 10.3390/ijms22189798.
6
Elementary mechanisms of calmodulin regulation of Na1.5 producing divergent arrhythmogenic phenotypes.
Proc Natl Acad Sci U S A. 2021 May 25;118(21). doi: 10.1073/pnas.2025085118.
8
Brugada Syndrome: Oligogenic or Mendelian Disease?
Int J Mol Sci. 2020 Mar 1;21(5):1687. doi: 10.3390/ijms21051687.
9
Critical assessment of secondary findings in genes linked to primary arrhythmia syndromes.
Hum Mutat. 2020 May;41(5):1025-1032. doi: 10.1002/humu.23996. Epub 2020 Feb 18.
10
Mutations in Na1.5 Reveal Calcium-Calmodulin Regulation of Sodium Channel.
Front Physiol. 2019 Jun 5;10:700. doi: 10.3389/fphys.2019.00700. eCollection 2019.

本文引用的文献

1
Current view on regulation of voltage-gated sodium channels by calcium and auxiliary proteins.
Protein Sci. 2016 Sep;25(9):1573-84. doi: 10.1002/pro.2960. Epub 2016 Jun 13.
2
Cardiac sodium channel mutation associated with epinephrine-induced QT prolongation and sinus node dysfunction.
Heart Rhythm. 2016 Jan;13(1):289-98. doi: 10.1016/j.hrthm.2015.08.021. Epub 2015 Aug 14.
3
Differential thermosensitivity in mixed syndrome cardiac sodium channel mutants.
J Physiol. 2015 Sep 15;593(18):4201-23. doi: 10.1113/JP270139. Epub 2015 Aug 12.
4
Intracellular calcium attenuates late current conducted by mutant human cardiac sodium channels.
Circ Arrhythm Electrophysiol. 2015 Aug;8(4):933-41. doi: 10.1161/CIRCEP.115.002760. Epub 2015 May 28.
5
Brugada syndrome, exercise, and exercise testing.
Clin Cardiol. 2015 May;38(5):323-6. doi: 10.1002/clc.22386. Epub 2015 May 8.
7
The role of late I Na in development of cardiac arrhythmias.
Handb Exp Pharmacol. 2014;221:137-68. doi: 10.1007/978-3-642-41588-3_7.
8
Sodium overload due to a persistent current that attenuates the arrhythmogenic potential of a novel LQT3 mutation.
Front Pharmacol. 2013 Oct 1;4:126. doi: 10.3389/fphar.2013.00126. eCollection 2013.
10
Post-translational modifications of the cardiac Na channel: contribution of CaMKII-dependent phosphorylation to acquired arrhythmias.
Am J Physiol Heart Circ Physiol. 2013 Aug 15;305(4):H431-45. doi: 10.1152/ajpheart.00306.2013. Epub 2013 Jun 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验