Suppr超能文献

用于自动化重症监护的生理闭环控制医疗器械的监管考虑因素:美国食品和药物管理局研讨会讨论主题。

Regulatory Considerations for Physiological Closed-Loop Controlled Medical Devices Used for Automated Critical Care: Food and Drug Administration Workshop Discussion Topics.

机构信息

From the Office of Device Evaluation.

Office of Science and Engineering Laboratories.

出版信息

Anesth Analg. 2018 Jun;126(6):1916-1925. doi: 10.1213/ANE.0000000000002329.

Abstract

Part of the mission of the Center for Devices and Radiological Health (CDRH) at the US Food and Drug Administration is to facilitate medical device innovation. Therefore, CDRH plays an important role in helping its stakeholders such as manufacturers, health care professionals, patients, patient advocates, academia, and other government agencies navigate the regulatory landscape for medical devices. This is particularly important for innovative physiological closed-loop controlled (PCLC) devices used in critical care environments, such as intensive care units, emergency settings, and battlefield environments. CDRH's current working definition of a PCLC medical device is a medical device that incorporates physiological sensor(s) for automatic manipulation of a physiological variable through actuation of therapy that is conventionally made by a clinician. These emerging devices enable automatic therapy delivery and may have the potential to revolutionize the standard of care by ensuring adequate and timely therapy delivery with improved performance in high workload and high-stress environments. For emergency response and military applications, automatic PCLC devices may play an important role in reducing cognitive overload, minimizing human error, and enhancing medical care during surge scenarios (ie, events that exceed the capability of the normal medical infrastructure). CDRH held an open public workshop on October 13 and 14, 2015 with the aim of fostering an open discussion on design, implementation, and evaluation considerations associated with PCLC devices used in critical care environments. CDRH is currently developing regulatory recommendations and guidelines that will facilitate innovation for PCLC devices. This article highlights the contents of the white paper that was central to the workshop and focuses on the ensuing discussions regarding the engineering, clinical, and human factors considerations.

摘要

美国食品和药物管理局设备和放射健康中心(CDRH)的部分使命是促进医疗器械创新。因此,CDRH 在帮助其利益相关者(如制造商、医疗保健专业人员、患者、患者权益倡导者、学术界和其他政府机构)了解医疗器械监管环境方面发挥着重要作用。这对于在重症监护环境(如重症监护病房、急诊环境和战场环境)中使用的创新生理闭环控制(PCLC)设备尤为重要。CDRH 目前对 PCLC 医疗器械的定义是,一种通过对生理变量进行自动操作来整合生理传感器的医疗器械,从而实现治疗的自动传递,而这种治疗通常是由临床医生进行的。这些新兴设备能够实现自动治疗输送,并且有可能通过确保在高工作量和高压力环境中提供充足和及时的治疗来改变护理标准。对于应急响应和军事应用,自动 PCLC 设备在减轻认知负担、最大限度地减少人为错误和增强应急情况下的医疗护理方面可能发挥重要作用(即在超过正常医疗基础设施能力的情况下发生的事件)。CDRH 于 2015 年 10 月 13 日和 14 日举行了公开公众研讨会,旨在就重症监护环境中使用的 PCLC 设备的设计、实施和评估注意事项进行公开讨论。CDRH 目前正在制定监管建议和指南,以促进 PCLC 设备的创新。本文重点介绍了研讨会核心的白皮书内容,并重点讨论了随后关于工程、临床和人为因素考虑的讨论。

相似文献

2
Brain-computer interface devices for patients with paralysis and amputation: a meeting report.
J Neural Eng. 2016 Apr;13(2):023001. doi: 10.1088/1741-2560/13/2/023001. Epub 2016 Feb 29.
3
Measuring Patient Preferences at the FDA Center for Devices and Radiological Health: Reflections and Projections.
Value Health. 2021 Jul;24(7):1024-1029. doi: 10.1016/j.jval.2021.01.009. Epub 2021 Apr 28.
4
Interventional cardiology live case presentations regulatory considerations.
Heart Rhythm. 2010 Oct;7(10):e1-3. doi: 10.1016/j.hrthm.2010.08.024.
6
ISPOR, the FDA, and the Evolving Regulatory Science of Medical Device Products.
Value Health. 2019 Jul;22(7):754-761. doi: 10.1016/j.jval.2019.03.020. Epub 2019 Jun 8.
7
Summary of the FDA virtual public workshop on spinal device clinical review held on September 17, 2021.
Spine J. 2022 Sep;22(9):1423-1433. doi: 10.1016/j.spinee.2022.04.008. Epub 2022 Apr 20.
8
The Role of the FDA and Regulatory Approval of New Devices for Diabetes Care.
Curr Diab Rep. 2017 Jun;17(6):40. doi: 10.1007/s11892-017-0871-6.
9
Improving medical device regulation: the United States and Europe in perspective.
Milbank Q. 2014 Mar;92(1):114-50. doi: 10.1111/1468-0009.12043.
10
Regulatory Science, and How Device Regulation Will Shape Our Future.
Pediatr Cardiol. 2020 Mar;41(3):469-474. doi: 10.1007/s00246-020-02296-0. Epub 2020 Mar 20.

引用本文的文献

1
A Lumped-Parameter Model of the Cardiovascular System Response for Evaluating Automated Fluid Resuscitation Systems.
IEEE Access. 2024;12:62511-62525. doi: 10.1109/access.2024.3395008. Epub 2024 May 8.
2
Closed-loop anesthesia: foundations and applications in contemporary perioperative medicine.
J Clin Monit Comput. 2024 Apr;38(2):487-504. doi: 10.1007/s10877-023-01111-4. Epub 2024 Jan 6.
3
Closed-loop control of anesthetic state in nonhuman primates.
PNAS Nexus. 2023 Oct 31;2(10):pgad293. doi: 10.1093/pnasnexus/pgad293. eCollection 2023 Oct.
4
Closed-Loop Pharmacologic Control of Blood Pressure: A Review of Existing Systems.
Cureus. 2023 Sep 13;15(9):e45188. doi: 10.7759/cureus.45188. eCollection 2023 Sep.
5
Synthetic biomedical data generation in support of Clinical Trials.
Front Big Data. 2023 Aug 15;6:1085571. doi: 10.3389/fdata.2023.1085571. eCollection 2023.
6
Physiological Modeling of Hemodynamic Responses to Sodium Nitroprusside.
J Pers Med. 2023 Jul 6;13(7):1101. doi: 10.3390/jpm13071101.
8
Closed-Loop Controlled Fluid Administration Systems: A Comprehensive Scoping Review.
J Pers Med. 2022 Jul 18;12(7):1168. doi: 10.3390/jpm12071168.
9
A Century of Technology in Anesthesia & Analgesia.
Anesth Analg. 2022 Aug 1;135(2S Suppl 1):S48-S61. doi: 10.1213/ANE.0000000000006027. Epub 2022 Jul 15.
10
Artificial intelligence and anesthesia: A narrative review.
Saudi J Anaesth. 2022 Jan-Mar;16(1):86-93. doi: 10.4103/sja.sja_669_21. Epub 2022 Jan 4.

本文引用的文献

1
Prediction of Hemodynamic Response to Epinephrine via Model-Based System Identification.
IEEE J Biomed Health Inform. 2016 Jan;20(1):416-23. doi: 10.1109/JBHI.2014.2371533. Epub 2014 Nov 20.
2
Platform for real-time simulation of dynamic systems and hardware-in-the-loop for control algorithms.
Sensors (Basel). 2014 Oct 15;14(10):19176-99. doi: 10.3390/s141019176.
3
Closed-loop systems in anesthesia: reality or fantasy?
Anesth Analg. 2013 Nov;117(5):1039-41. doi: 10.1213/ANE.0b013e3182a5d689.
4
Closed-loop control of anesthesia: a primer for anesthesiologists.
Anesth Analg. 2013 Nov;117(5):1130-8. doi: 10.1213/ANE.0b013e3182973687.
5
Feedback control for clinicians.
J Clin Monit Comput. 2014 Feb;28(1):5-11. doi: 10.1007/s10877-013-9469-y. Epub 2013 Apr 12.
7
Innovative technologies applied to anesthesia: how will they impact the way clinicians practice?
J Cardiothorac Vasc Anesth. 2012 Aug;26(4):711-20. doi: 10.1053/j.jvca.2012.02.012. Epub 2012 Apr 14.
8
A direct dynamic dose-response model of propofol for individualized anesthesia care.
IEEE Trans Biomed Eng. 2012 Feb;59(2):571-8. doi: 10.1109/TBME.2011.2177497. Epub 2011 Nov 24.
9
A portable hardware-in-the-loop (HIL) device for automotive diagnostic control systems.
ISA Trans. 2012 Jan;51(1):229-36. doi: 10.1016/j.isatra.2011.10.009. Epub 2011 Nov 8.
10
Review article: closed-loop systems in anesthesia: is there a potential for closed-loop fluid management and hemodynamic optimization?
Anesth Analg. 2012 Jan;114(1):130-43. doi: 10.1213/ANE.0b013e318230e9e0. Epub 2011 Sep 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验