Suppr超能文献

ISWI染色质重塑因子感知核小体修饰以确定底物偏好。

ISWI chromatin remodellers sense nucleosome modifications to determine substrate preference.

作者信息

Dann Geoffrey P, Liszczak Glen P, Bagert John D, Müller Manuel M, Nguyen Uyen T T, Wojcik Felix, Brown Zachary Z, Bos Jeffrey, Panchenko Tatyana, Pihl Rasmus, Pollock Samuel B, Diehl Katharine L, Allis C David, Muir Tom W

机构信息

Department of Chemistry, Princeton University, Frick Laboratory, Princeton, New Jersey 08544, USA.

Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York 10065, USA.

出版信息

Nature. 2017 Aug 31;548(7669):607-611. doi: 10.1038/nature23671. Epub 2017 Aug 2.

Abstract

ATP-dependent chromatin remodellers regulate access to genetic information by controlling nucleosome positions in vivo. However, the mechanism by which remodellers discriminate between different nucleosome substrates is poorly understood. Many chromatin remodelling proteins possess conserved protein domains that interact with nucleosomal features. Here we used a quantitative high-throughput approach, based on the use of a DNA-barcoded mononucleosome library, to profile the biochemical activity of human ISWI family remodellers in response to a diverse set of nucleosome modifications. We show that accessory (non-ATPase) subunits of ISWI remodellers can distinguish between differentially modified nucleosomes, directing remodelling activity towards specific nucleosome substrates according to their modification state. Unexpectedly, we show that the nucleosome acidic patch is necessary for maximum activity of all ISWI remodellers evaluated. This dependence also extends to CHD and SWI/SNF family remodellers, suggesting that the acidic patch may be generally required for chromatin remodelling. Critically, remodelling activity can be regulated by modifications neighbouring the acidic patch, signifying that it may act as a tunable interaction hotspot for ATP-dependent chromatin remodellers and, by extension, many other chromatin effectors that engage this region of the nucleosome surface.

摘要

ATP 依赖的染色质重塑因子通过在体内控制核小体位置来调节对遗传信息的获取。然而,重塑因子区分不同核小体底物的机制仍知之甚少。许多染色质重塑蛋白拥有与核小体特征相互作用的保守蛋白结构域。在此,我们基于使用 DNA 条形码单核小体文库,采用定量高通量方法,来分析人类 ISWI 家族重塑因子对多种核小体修饰的生化活性。我们发现,ISWI 重塑因子的辅助(非 ATP 酶)亚基能够区分不同修饰的核小体,根据其修饰状态将重塑活性导向特定的核小体底物。出乎意料的是,我们发现核小体酸性斑块对于所评估的所有 ISWI 重塑因子的最大活性是必需的。这种依赖性也延伸至 CHD 和 SWI/SNF 家族重塑因子,这表明酸性斑块可能是染色质重塑普遍需要的。至关重要的是,重塑活性可由酸性斑块附近的修饰调节,这意味着它可能作为 ATP 依赖的染色质重塑因子以及进而许多其他与核小体表面该区域相互作用的染色质效应物的可调谐相互作用热点。

相似文献

1
ISWI chromatin remodellers sense nucleosome modifications to determine substrate preference.
Nature. 2017 Aug 31;548(7669):607-611. doi: 10.1038/nature23671. Epub 2017 Aug 2.
2
Mechanism of chromatin remodelling revealed by the Snf2-nucleosome structure.
Nature. 2017 Apr 27;544(7651):440-445. doi: 10.1038/nature22036. Epub 2017 Apr 19.
3
Integrated epigenomic analysis stratifies chromatin remodellers into distinct functional groups.
Epigenetics Chromatin. 2019 Feb 12;12(1):12. doi: 10.1186/s13072-019-0258-9.
4
Genome-wide nucleosome specificity and function of chromatin remodellers in ES cells.
Nature. 2016 Feb 4;530(7588):113-6. doi: 10.1038/nature16505. Epub 2016 Jan 27.
5
Regulation of ISWI involves inhibitory modules antagonized by nucleosomal epitopes.
Nature. 2012 Dec 13;492(7428):280-4. doi: 10.1038/nature11625. Epub 2012 Nov 11.
6
Histone H4 tail mediates allosteric regulation of nucleosome remodelling by linker DNA.
Nature. 2014 Aug 14;512(7513):213-7. doi: 10.1038/nature13380. Epub 2014 Jun 29.
7
A critical epitope for substrate recognition by the nucleosome remodeling ATPase ISWI.
Nucleic Acids Res. 2002 Feb 1;30(3):649-55. doi: 10.1093/nar/30.3.649.
8
Critical role for the histone H4 N terminus in nucleosome remodeling by ISWI.
Mol Cell Biol. 2001 Feb;21(3):875-83. doi: 10.1128/MCB.21.3.875-883.2001.
9
Energy-driven genome regulation by ATP-dependent chromatin remodellers.
Nat Rev Mol Cell Biol. 2024 Apr;25(4):309-332. doi: 10.1038/s41580-023-00683-y. Epub 2023 Dec 11.
10
Nucleosome sliding by Chd1 does not require rigid coupling between DNA-binding and ATPase domains.
EMBO Rep. 2013 Dec;14(12):1098-103. doi: 10.1038/embor.2013.158. Epub 2013 Oct 15.

引用本文的文献

1
Multiplexed single-molecule characterization at the library scale.
Nat Protoc. 2025 Jun 4. doi: 10.1038/s41596-025-01198-w.
2
Native nucleosomes intrinsically encode genome organization principles.
Nature. 2025 May 7. doi: 10.1038/s41586-025-08971-7.
3
Structural basis of human CHD1 nucleosome recruitment and pausing.
Mol Cell. 2025 May 15;85(10):1938-1951.e6. doi: 10.1016/j.molcel.2025.04.020. Epub 2025 May 6.
4
Structure and nucleic acid interactions of the S domain of the hepatitis delta virus small antigen.
Proc Natl Acad Sci U S A. 2025 May 13;122(19):e2411890122. doi: 10.1073/pnas.2411890122. Epub 2025 May 5.
6
Advances in the chemical synthesis of human proteoforms.
Sci China Life Sci. 2025 Apr 8. doi: 10.1007/s11427-024-2860-5.
7
Protein editing using a coordinated transposition reaction.
Science. 2025 Apr 4;388(6742):68-74. doi: 10.1126/science.adq8540. Epub 2025 Apr 3.
8
A nucleosome switch primes hepatitis B virus infection.
Cell. 2025 Apr 17;188(8):2111-2126.e21. doi: 10.1016/j.cell.2025.01.033. Epub 2025 Feb 20.
9
H3K56 acetylation regulates chromatin maturation following DNA replication.
Nat Commun. 2025 Jan 2;16(1):134. doi: 10.1038/s41467-024-55144-7.

本文引用的文献

1
Mutational landscape of uterine and ovarian carcinosarcomas implicates histone genes in epithelial-mesenchymal transition.
Proc Natl Acad Sci U S A. 2016 Oct 25;113(43):12238-12243. doi: 10.1073/pnas.1614120113. Epub 2016 Oct 10.
2
Selective recognition of histone crotonylation by double PHD fingers of MOZ and DPF2.
Nat Chem Biol. 2016 Dec;12(12):1111-1118. doi: 10.1038/nchembio.2218. Epub 2016 Oct 24.
3
Molecular Coupling of Histone Crotonylation and Active Transcription by AF9 YEATS Domain.
Mol Cell. 2016 Apr 21;62(2):181-193. doi: 10.1016/j.molcel.2016.03.028.
4
Structural basis for histone H2B deubiquitination by the SAGA DUB module.
Science. 2016 Feb 12;351(6274):725-8. doi: 10.1126/science.aac5681.
5
Histone Acetylation near the Nucleosome Dyad Axis Enhances Nucleosome Disassembly by RSC and SWI/SNF.
Mol Cell Biol. 2015 Dec;35(23):4083-92. doi: 10.1128/MCB.00441-15. Epub 2015 Sep 28.
6
Inteins as traceless purification tags for unnatural amino acid proteins.
J Am Chem Soc. 2015 Feb 11;137(5):1734-7. doi: 10.1021/ja5103019. Epub 2015 Jan 27.
7
Molecular basis of histone tail recognition by human TIP5 PHD finger and bromodomain of the chromatin remodeling complex NoRC.
Structure. 2015 Jan 6;23(1):80-92. doi: 10.1016/j.str.2014.10.017. Epub 2014 Dec 18.
8
Nucleosome structure and function.
Chem Rev. 2015 Mar 25;115(6):2255-73. doi: 10.1021/cr500373h. Epub 2014 Dec 12.
9
Crystal structure of the PRC1 ubiquitylation module bound to the nucleosome.
Nature. 2014 Oct 30;514(7524):591-6. doi: 10.1038/nature13890.
10
Histones: at the crossroads of peptide and protein chemistry.
Chem Rev. 2015 Mar 25;115(6):2296-349. doi: 10.1021/cr5003529. Epub 2014 Oct 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验