Department of Microbiology, Boston University School of Medicine, Boston, MA, USA; National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA.
Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA.
Antiviral Res. 2017 Oct;146:21-27. doi: 10.1016/j.antiviral.2017.08.005. Epub 2017 Aug 12.
Ebola virus (EBOV) causes a severe disease in humans with the potential for significant international public health consequences. Currently, treatments are limited to experimental vaccines and therapeutics. Therefore, research into prophylaxis and antiviral strategies to combat EBOV infections is of utmost importance. The requirement for high containment laboratories to study EBOV infection is a limiting factor for conducting EBOV research. To overcome this issue, minigenome systems have been used as valuable tools to study EBOV replication and transcription mechanisms and to screen for antiviral compounds at biosafety level 2. The most commonly used EBOV minigenome system relies on the ectopic expression of the T7 RNA polymerase (T7), which can be limiting for certain cell types. We have established an improved EBOV minigenome system that utilizes endogenous RNA polymerase II (pol II) as a driver for the synthesis of minigenome RNA. We show here that this system is as efficient as the T7-based minigenome system, but works in a wider range of cell types, including biologically relevant cell types such as bat cells. Importantly, we were also able to adapt this system to a reliable and cost-effective 96-well format antiviral screening assay with a Z-factor of 0.74, indicative of a robust assay. Using this format, we identified JG40, an inhibitor of Hsp70, as an inhibitor of EBOV replication, highlighting the potential for this system as a tool for antiviral drug screening. In summary, this updated EBOV minigenome system provides a convenient and effective means of advancing the field of EBOV research.
埃博拉病毒(EBOV)可引起人类严重疾病,具有重大国际公共卫生影响。目前,治疗方法仅限于实验性疫苗和疗法。因此,研究预防和抗病毒策略以对抗 EBOV 感染至关重要。需要在高生物安全实验室中研究 EBOV 感染是进行 EBOV 研究的一个限制因素。为了克服这个问题,小基因系统已被用作研究 EBOV 复制和转录机制以及筛选抗病毒化合物的有价值工具,其生物安全等级为 2 级。最常用的 EBOV 小基因系统依赖于 T7 RNA 聚合酶(T7)的异位表达,这对某些细胞类型可能是有限的。我们已经建立了一种改进的 EBOV 小基因系统,该系统利用内源性 RNA 聚合酶 II(pol II)作为合成小基因 RNA 的驱动子。我们在这里表明,该系统与基于 T7 的小基因系统一样高效,但在更广泛的细胞类型中起作用,包括生物学相关的细胞类型,如蝙蝠细胞。重要的是,我们还能够将该系统适应可靠且具有成本效益的 96 孔格式抗病毒筛选测定,其 Z 因子为 0.74,表明该测定具有稳健性。使用这种格式,我们确定了 JG40,一种 Hsp70 的抑制剂,是 EBOV 复制的抑制剂,突出了该系统作为抗病毒药物筛选工具的潜力。总之,这个更新的 EBOV 小基因系统为推进 EBOV 研究领域提供了一种方便有效的手段。