Suppr超能文献

一种 RNA 聚合酶 II 驱动的埃博拉病毒小基因系统,作为一种先进的抗病毒药物筛选工具。

An RNA polymerase II-driven Ebola virus minigenome system as an advanced tool for antiviral drug screening.

机构信息

Department of Microbiology, Boston University School of Medicine, Boston, MA, USA; National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA.

Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA.

出版信息

Antiviral Res. 2017 Oct;146:21-27. doi: 10.1016/j.antiviral.2017.08.005. Epub 2017 Aug 12.

Abstract

Ebola virus (EBOV) causes a severe disease in humans with the potential for significant international public health consequences. Currently, treatments are limited to experimental vaccines and therapeutics. Therefore, research into prophylaxis and antiviral strategies to combat EBOV infections is of utmost importance. The requirement for high containment laboratories to study EBOV infection is a limiting factor for conducting EBOV research. To overcome this issue, minigenome systems have been used as valuable tools to study EBOV replication and transcription mechanisms and to screen for antiviral compounds at biosafety level 2. The most commonly used EBOV minigenome system relies on the ectopic expression of the T7 RNA polymerase (T7), which can be limiting for certain cell types. We have established an improved EBOV minigenome system that utilizes endogenous RNA polymerase II (pol II) as a driver for the synthesis of minigenome RNA. We show here that this system is as efficient as the T7-based minigenome system, but works in a wider range of cell types, including biologically relevant cell types such as bat cells. Importantly, we were also able to adapt this system to a reliable and cost-effective 96-well format antiviral screening assay with a Z-factor of 0.74, indicative of a robust assay. Using this format, we identified JG40, an inhibitor of Hsp70, as an inhibitor of EBOV replication, highlighting the potential for this system as a tool for antiviral drug screening. In summary, this updated EBOV minigenome system provides a convenient and effective means of advancing the field of EBOV research.

摘要

埃博拉病毒(EBOV)可引起人类严重疾病,具有重大国际公共卫生影响。目前,治疗方法仅限于实验性疫苗和疗法。因此,研究预防和抗病毒策略以对抗 EBOV 感染至关重要。需要在高生物安全实验室中研究 EBOV 感染是进行 EBOV 研究的一个限制因素。为了克服这个问题,小基因系统已被用作研究 EBOV 复制和转录机制以及筛选抗病毒化合物的有价值工具,其生物安全等级为 2 级。最常用的 EBOV 小基因系统依赖于 T7 RNA 聚合酶(T7)的异位表达,这对某些细胞类型可能是有限的。我们已经建立了一种改进的 EBOV 小基因系统,该系统利用内源性 RNA 聚合酶 II(pol II)作为合成小基因 RNA 的驱动子。我们在这里表明,该系统与基于 T7 的小基因系统一样高效,但在更广泛的细胞类型中起作用,包括生物学相关的细胞类型,如蝙蝠细胞。重要的是,我们还能够将该系统适应可靠且具有成本效益的 96 孔格式抗病毒筛选测定,其 Z 因子为 0.74,表明该测定具有稳健性。使用这种格式,我们确定了 JG40,一种 Hsp70 的抑制剂,是 EBOV 复制的抑制剂,突出了该系统作为抗病毒药物筛选工具的潜力。总之,这个更新的 EBOV 小基因系统为推进 EBOV 研究领域提供了一种方便有效的手段。

相似文献

1
An RNA polymerase II-driven Ebola virus minigenome system as an advanced tool for antiviral drug screening.
Antiviral Res. 2017 Oct;146:21-27. doi: 10.1016/j.antiviral.2017.08.005. Epub 2017 Aug 12.
2
Identification of a small molecule inhibitor of Ebola virus genome replication and transcription using in silico screening.
Antiviral Res. 2018 Aug;156:46-54. doi: 10.1016/j.antiviral.2018.06.003. Epub 2018 Jun 2.
3
Development of a Měnglà virus minigenome and comparison of its polymerase complexes with those of other filoviruses.
Virol Sin. 2024 Jun;39(3):459-468. doi: 10.1016/j.virs.2024.03.011. Epub 2024 May 21.
4
Modeling Ebola Virus Genome Replication and Transcription with Minigenome Systems.
Methods Mol Biol. 2017;1628:79-92. doi: 10.1007/978-1-4939-7116-9_6.
6
Lassa and Ebola virus inhibitors identified using minigenome and recombinant virus reporter systems.
Antiviral Res. 2016 Dec;136:9-18. doi: 10.1016/j.antiviral.2016.10.007. Epub 2016 Oct 19.
8
A high throughput screen identifies benzoquinoline compounds as inhibitors of Ebola virus replication.
Antiviral Res. 2018 Feb;150:193-201. doi: 10.1016/j.antiviral.2017.12.019. Epub 2017 Dec 30.
9
Advancing Marburg virus antiviral screening: Optimization of a novel T7 polymerase-independent minigenome system.
Antiviral Res. 2021 Jan;185:104977. doi: 10.1016/j.antiviral.2020.104977. Epub 2020 Nov 19.
10
Characterization of the catalytic center of the Ebola virus L polymerase.
PLoS Negl Trop Dis. 2017 Oct 9;11(10):e0005996. doi: 10.1371/journal.pntd.0005996. eCollection 2017 Oct.

引用本文的文献

1
Development of a Pentacistronic Ebola Virus Minigenome System.
Viruses. 2025 May 9;17(5):688. doi: 10.3390/v17050688.
2
Marburg Virus Minigenome Assays.
Methods Mol Biol. 2025;2877:129-139. doi: 10.1007/978-1-0716-4256-6_9.
3
Intracellular Ebola virus nucleocapsid assembly revealed by in situ cryo-electron tomography.
Cell. 2024 Oct 3;187(20):5587-5603.e19. doi: 10.1016/j.cell.2024.08.044. Epub 2024 Sep 17.
4
Hippo signaling pathway regulates Ebola virus transcription and egress.
Nat Commun. 2024 Aug 13;15(1):6953. doi: 10.1038/s41467-024-51356-z.
5
Development of a Měnglà virus minigenome and comparison of its polymerase complexes with those of other filoviruses.
Virol Sin. 2024 Jun;39(3):459-468. doi: 10.1016/j.virs.2024.03.011. Epub 2024 May 21.
6
Development of an EBOV MiniG plus system as an advanced tool for anti-Ebola virus drug screening.
Heliyon. 2023 Nov 11;9(11):e22138. doi: 10.1016/j.heliyon.2023.e22138. eCollection 2023 Nov.
8
Labeling Ebola Virus with a Self-Splicing Fluorescent Reporter.
Microorganisms. 2022 Oct 26;10(11):2110. doi: 10.3390/microorganisms10112110.
9
Host cell stress response as a predictor of COVID-19 infectivity and disease progression.
Front Mol Biosci. 2022 Aug 11;9:938099. doi: 10.3389/fmolb.2022.938099. eCollection 2022.
10
Innate Immunity to Orthohantaviruses: Could Divergent Immune Interactions Explain Host-specific Disease Outcomes?
J Mol Biol. 2022 Mar 30;434(6):167230. doi: 10.1016/j.jmb.2021.167230. Epub 2021 Sep 4.

本文引用的文献

1
Elucidation of the Cellular Interactome of Ebola Virus Nucleoprotein and Identification of Therapeutic Targets.
J Proteome Res. 2016 Dec 2;15(12):4290-4303. doi: 10.1021/acs.jproteome.6b00337. Epub 2016 Nov 22.
2
Polyamines and Hypusination Are Required for Ebolavirus Gene Expression and Replication.
mBio. 2016 Jul 26;7(4):e00882-16. doi: 10.1128/mBio.00882-16.
4
Defining Hsp70 Subnetworks in Dengue Virus Replication Reveals Key Vulnerability in Flavivirus Infection.
Cell. 2015 Nov 19;163(5):1108-1123. doi: 10.1016/j.cell.2015.10.046. Epub 2015 Nov 12.
5
High-Throughput Minigenome System for Identifying Small-Molecule Inhibitors of Ebola Virus Replication.
ACS Infect Dis. 2015 Aug 14;1(8):380-7. doi: 10.1021/acsinfecdis.5b00053. Epub 2015 Jun 24.
6
Ebola and Marburg haemorrhagic fever.
J Clin Virol. 2015 Mar;64:111-9. doi: 10.1016/j.jcv.2015.01.014. Epub 2015 Jan 23.
7
Analysis of the highly diverse gene borders in Ebola virus reveals a distinct mechanism of transcriptional regulation.
J Virol. 2014 Nov;88(21):12558-71. doi: 10.1128/JVI.01863-14. Epub 2014 Aug 20.
8
High-throughput, luciferase-based reverse genetics systems for identifying inhibitors of Marburg and Ebola viruses.
Antiviral Res. 2014 Jun;106:86-94. doi: 10.1016/j.antiviral.2014.03.018. Epub 2014 Apr 5.
9
Analogs of the Allosteric Heat Shock Protein 70 (Hsp70) Inhibitor, MKT-077, as Anti-Cancer Agents.
ACS Med Chem Lett. 2013 Nov 14;4(11):1042-7. doi: 10.1021/ml400204n.
10
Filovirus replication and transcription.
Future Virol. 2007 Mar;2(2):205-215. doi: 10.2217/17460794.2.2.205.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验