Department of Bioengineering, Department of Chemistry and Biochemistry, and California NanoSystems Institute, University of California Los Angeles , Los Angeles, California 90095-1600, United States.
Department of Physics, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States.
ACS Nano. 2017 Sep 26;11(9):9340-9351. doi: 10.1021/acsnano.7b04738. Epub 2017 Sep 1.
Bacteria exhibit surface motility modes that play pivotal roles in early-stage biofilm community development, such as type IV pili-driven "twitching" motility and flagellum-driven "spinning" and "swarming" motility. Appendage-driven motility is controlled by molecular motors, and analysis of surface motility behavior is complicated by its inherently 3D nature, the speed of which is too fast for confocal microscopy to capture. Here, we combine electromagnetic field computation and statistical image analysis to generate 3D movies close to a surface at 5 ms time resolution using conventional inverted microscopes. We treat each bacterial cell as a spherocylindrical lens and use finite element modeling to solve Maxwell's equations and compute the diffracted light intensities associated with different angular orientations of the bacterium relative to the surface. By performing cross-correlation calculations between measured 2D microscopy images and a library of computed light intensities, we demonstrate that near-surface 3D movies of Pseudomonas aeruginosa translational and rotational motion are possible at high temporal resolution. Comparison between computational reconstructions and detailed hydrodynamic calculations reveals that P. aeruginosa act like low Reynolds number spinning tops with unstable orbits, driven by a flagellum motor with a torque output of ∼2 pN μm. Interestingly, our analysis reveals that P. aeruginosa can undergo complex flagellum-driven dynamical behavior, including precession, nutation, and an unexpected taxonomy of surface motility mechanisms, including upright-spinning bacteria that diffuse laterally across the surface, and horizontal bacteria that follow helicoidal trajectories and exhibit superdiffusive movements parallel to the surface.
细菌表现出的表面运动模式在生物膜群落发展的早期阶段起着关键作用,例如 IV 型菌毛驱动的“蠕动”运动和鞭毛驱动的“旋转”和“涌动”运动。附属驱动的运动受分子马达控制,由于其固有的 3D 性质,表面运动行为的分析变得复杂,其速度太快,共聚焦显微镜无法捕捉。在这里,我们结合电磁场计算和统计图像分析,使用常规倒置显微镜以 5ms 的时间分辨率生成接近表面的 3D 电影。我们将每个细菌细胞视为一个球柱透镜,并使用有限元建模来求解麦克斯韦方程,并计算与细菌相对于表面的不同角度取向相关的衍射光强度。通过在测量的 2D 显微镜图像和计算的光强度库之间执行互相关计算,我们证明了在高时间分辨率下可以对铜绿假单胞菌的平移和旋转运动进行近表面 3D 电影拍摄。计算重建和详细的流体动力学计算之间的比较表明,铜绿假单胞菌的行为类似于具有不稳定轨道的低雷诺数旋转陀螺,由一个输出约为 2pNμm 的鞭毛马达驱动。有趣的是,我们的分析表明,铜绿假单胞菌可以经历复杂的鞭毛驱动动力学行为,包括进动、章动和意想不到的表面运动机制分类,包括侧向扩散的直立旋转细菌,以及沿螺旋轨迹运动并表现出与表面平行的超扩散运动的水平细菌。