Suppr超能文献

高速“4D”细菌表面运动的计算显微镜。

High-Speed "4D" Computational Microscopy of Bacterial Surface Motility.

机构信息

Department of Bioengineering, Department of Chemistry and Biochemistry, and California NanoSystems Institute, University of California Los Angeles , Los Angeles, California 90095-1600, United States.

Department of Physics, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States.

出版信息

ACS Nano. 2017 Sep 26;11(9):9340-9351. doi: 10.1021/acsnano.7b04738. Epub 2017 Sep 1.

Abstract

Bacteria exhibit surface motility modes that play pivotal roles in early-stage biofilm community development, such as type IV pili-driven "twitching" motility and flagellum-driven "spinning" and "swarming" motility. Appendage-driven motility is controlled by molecular motors, and analysis of surface motility behavior is complicated by its inherently 3D nature, the speed of which is too fast for confocal microscopy to capture. Here, we combine electromagnetic field computation and statistical image analysis to generate 3D movies close to a surface at 5 ms time resolution using conventional inverted microscopes. We treat each bacterial cell as a spherocylindrical lens and use finite element modeling to solve Maxwell's equations and compute the diffracted light intensities associated with different angular orientations of the bacterium relative to the surface. By performing cross-correlation calculations between measured 2D microscopy images and a library of computed light intensities, we demonstrate that near-surface 3D movies of Pseudomonas aeruginosa translational and rotational motion are possible at high temporal resolution. Comparison between computational reconstructions and detailed hydrodynamic calculations reveals that P. aeruginosa act like low Reynolds number spinning tops with unstable orbits, driven by a flagellum motor with a torque output of ∼2 pN μm. Interestingly, our analysis reveals that P. aeruginosa can undergo complex flagellum-driven dynamical behavior, including precession, nutation, and an unexpected taxonomy of surface motility mechanisms, including upright-spinning bacteria that diffuse laterally across the surface, and horizontal bacteria that follow helicoidal trajectories and exhibit superdiffusive movements parallel to the surface.

摘要

细菌表现出的表面运动模式在生物膜群落发展的早期阶段起着关键作用,例如 IV 型菌毛驱动的“蠕动”运动和鞭毛驱动的“旋转”和“涌动”运动。附属驱动的运动受分子马达控制,由于其固有的 3D 性质,表面运动行为的分析变得复杂,其速度太快,共聚焦显微镜无法捕捉。在这里,我们结合电磁场计算和统计图像分析,使用常规倒置显微镜以 5ms 的时间分辨率生成接近表面的 3D 电影。我们将每个细菌细胞视为一个球柱透镜,并使用有限元建模来求解麦克斯韦方程,并计算与细菌相对于表面的不同角度取向相关的衍射光强度。通过在测量的 2D 显微镜图像和计算的光强度库之间执行互相关计算,我们证明了在高时间分辨率下可以对铜绿假单胞菌的平移和旋转运动进行近表面 3D 电影拍摄。计算重建和详细的流体动力学计算之间的比较表明,铜绿假单胞菌的行为类似于具有不稳定轨道的低雷诺数旋转陀螺,由一个输出约为 2pNμm 的鞭毛马达驱动。有趣的是,我们的分析表明,铜绿假单胞菌可以经历复杂的鞭毛驱动动力学行为,包括进动、章动和意想不到的表面运动机制分类,包括侧向扩散的直立旋转细菌,以及沿螺旋轨迹运动并表现出与表面平行的超扩散运动的水平细菌。

相似文献

1
High-Speed "4D" Computational Microscopy of Bacterial Surface Motility.
ACS Nano. 2017 Sep 26;11(9):9340-9351. doi: 10.1021/acsnano.7b04738. Epub 2017 Sep 1.
2
Flagella and pili-mediated near-surface single-cell motility mechanisms in P. aeruginosa.
Biophys J. 2011 Apr 6;100(7):1608-16. doi: 10.1016/j.bpj.2011.02.020.
3
Species-dependent hydrodynamics of flagellum-tethered bacteria in early biofilm development.
J R Soc Interface. 2016 Feb;13(115):20150966. doi: 10.1098/rsif.2015.0966.
4
PilZ Domain Protein FlgZ Mediates Cyclic Di-GMP-Dependent Swarming Motility Control in Pseudomonas aeruginosa.
J Bacteriol. 2016 Jun 13;198(13):1837-46. doi: 10.1128/JB.00196-16. Print 2016 Jul 1.
5
Foraging Signals Promote Swarming in Starving Pseudomonas aeruginosa.
mBio. 2021 Oct 26;12(5):e0203321. doi: 10.1128/mBio.02033-21. Epub 2021 Oct 5.
7
Single Cells Exhibit Differing Behavioral Phases during Early Stages of Pseudomonas aeruginosa Swarming.
J Bacteriol. 2019 Sep 6;201(19). doi: 10.1128/JB.00184-19. Print 2019 Oct 1.
8
Bacteria use type IV pili to walk upright and detach from surfaces.
Science. 2010 Oct 8;330(6001):197. doi: 10.1126/science.1194238.
9
Role of Cyclic Di-GMP and Exopolysaccharide in Type IV Pilus Dynamics.
J Bacteriol. 2017 Mar 28;199(8). doi: 10.1128/JB.00859-16. Print 2017 Apr 15.
10
[Single-cell analysis method for twitching motility of Pseudomonas aeruginosa].
Sheng Wu Gong Cheng Xue Bao. 2017 Sep 25;33(9):1611-1624. doi: 10.13345/j.cjb.170131.

引用本文的文献

2
A bacterial sense of touch: T4P retraction motor as a means of surface sensing by PA14.
J Bacteriol. 2024 Jul 25;206(7):e0044223. doi: 10.1128/jb.00442-23. Epub 2024 Jun 4.
3
How cells with diverse stator composition collectively swarm.
mBio. 2024 Apr 10;15(4):e0332223. doi: 10.1128/mbio.03322-23. Epub 2024 Mar 1.
4
Pseudomonas aeruginosa detachment from surfaces via a self-made small molecule.
J Biol Chem. 2021 Jan-Jun;296:100279. doi: 10.1016/j.jbc.2021.100279. Epub 2021 Jan 12.
5
Engineering photonics solutions for COVID-19.
APL Photonics. 2020 Sep 1;5(9):090901. doi: 10.1063/5.0021270.
6
Biophysical methods to quantify bacterial behaviors at oil-water interfaces.
J Ind Microbiol Biotechnol. 2020 Oct;47(9-10):725-738. doi: 10.1007/s10295-020-02293-5. Epub 2020 Aug 2.
8
Multigenerational memory and adaptive adhesion in early bacterial biofilm communities.
Proc Natl Acad Sci U S A. 2018 Apr 24;115(17):4471-4476. doi: 10.1073/pnas.1720071115. Epub 2018 Mar 20.

本文引用的文献

1
Multicellular Self-Organization of P. aeruginosa due to Interactions with Secreted Trails.
Phys Rev Lett. 2016 Oct 21;117(17):178102. doi: 10.1103/PhysRevLett.117.178102. Epub 2016 Oct 20.
2
Evolution of Cell Size Homeostasis and Growth Rate Diversity during Initial Surface Colonization of Shewanella oneidensis.
ACS Nano. 2016 Oct 25;10(10):9183-9192. doi: 10.1021/acsnano.6b05123. Epub 2016 Sep 6.
3
Effective Dynamics of Microorganisms That Interact with Their Own Trail.
Phys Rev Lett. 2016 Jul 15;117(3):038101. doi: 10.1103/PhysRevLett.117.038101. Epub 2016 Jul 11.
4
The Inhibitory Site of a Diguanylate Cyclase Is a Necessary Element for Interaction and Signaling with an Effector Protein.
J Bacteriol. 2016 May 13;198(11):1595-603. doi: 10.1128/JB.00090-16. Print 2016 Jun 1.
5
Sensational biofilms: surface sensing in bacteria.
Curr Opin Microbiol. 2016 Apr;30:139-146. doi: 10.1016/j.mib.2016.02.004. Epub 2016 Mar 8.
6
Species-dependent hydrodynamics of flagellum-tethered bacteria in early biofilm development.
J R Soc Interface. 2016 Feb;13(115):20150966. doi: 10.1098/rsif.2015.0966.
8
High-throughput 3D tracking of bacteria on a standard phase contrast microscope.
Nat Commun. 2015 Nov 2;6:8776. doi: 10.1038/ncomms9776.
9
How Bacteria Use Type IV Pili Machinery on Surfaces.
Trends Microbiol. 2015 Dec;23(12):775-788. doi: 10.1016/j.tim.2015.09.002. Epub 2015 Oct 22.
10
Type IV pili mechanochemically regulate virulence factors in Pseudomonas aeruginosa.
Proc Natl Acad Sci U S A. 2015 Jun 16;112(24):7563-8. doi: 10.1073/pnas.1502025112. Epub 2015 Jun 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验