a Department of Microbiology , The Ohio State University , Columbus , Ohio , USA.
c The Center for RNA Biology, The Ohio State University , Columbus , Ohio , USA.
RNA Biol. 2018;15(4-5):528-536. doi: 10.1080/15476286.2017.1377878. Epub 2017 Nov 3.
Retrograde transport of tRNAs from the cytoplasm to the nucleus was first described in Saccharomyces cerevisiae and most recently in mammalian systems. Although the function of retrograde transport is not completely clear, it plays a role in the cellular response to changes in nutrient availability. Under low nutrient conditions tRNAs are sent from the cytoplasm to nucleus and presumably remain in storage there until nutrient levels improve. However, in S. cerevisiae tRNA retrograde transport is constitutive and occurs even when nutrient levels are adequate. Constitutive transport is important, at least, for the proper maturation of tRNA, which undergoes cytoplasmic splicing, but requires the action of a nuclear modification enzyme that only acts on a spliced tRNA. A lingering question in retrograde tRNA transport is whether it is relegated to S. cerevisiae and multicellular eukaryotes or alternatively, is a pathway with deeper evolutionary roots. In the early branching eukaryote Trypanosoma brucei, tRNA splicing, like in yeast, occurs in the cytoplasm. In the present report, we have used a combination of cell fractionation and molecular approaches that show the presence of significant amounts of spliced tRNA in the nucleus of T. brucei. Notably, the modification enzyme tRNA-guanine transglycosylase (TGT) localizes to the nucleus and, as shown here, is not able to add queuosine (Q) to an intron-containing tRNA. We suggest that retrograde transport is partly the result of the differential intracellular localization of the splicing machinery (cytoplasmic) and a modification enzyme, TGT (nuclear). These findings expand the evolutionary distribution of retrograde transport mechanisms to include early diverging eukaryotes, while highlighting its importance for queuosine biosynthesis.
tRNA 从细胞质逆行运输到细胞核首先在酿酒酵母中被描述,最近在哺乳动物系统中也有报道。尽管逆行运输的功能尚不完全清楚,但它在细胞对营养物质可用性变化的反应中发挥作用。在低营养条件下,tRNA 从细胞质被输送到细胞核,并推测在那里储存,直到营养水平提高。然而,在酿酒酵母中,tRNA 逆行运输是组成型的,即使在营养物质充足的情况下也会发生。组成型运输至少对 tRNA 的正确成熟很重要,tRNA 在细胞质中进行剪接,但需要一种核修饰酶的作用,而这种酶只作用于剪接的 tRNA。逆行 tRNA 运输中的一个悬而未决的问题是,它是否仅限于酿酒酵母和多细胞真核生物,或者是否是一种具有更深进化根源的途径。在早期分支的真核生物锥虫中,与酵母一样,tRNA 剪接发生在细胞质中。在本报告中,我们使用了细胞分级分离和分子方法的组合,表明在锥虫的细胞核中存在大量剪接的 tRNA。值得注意的是,修饰酶 tRNA-鸟嘌呤转移酶 (TGT) 定位于细胞核,并且,如这里所示,不能将 queuosine (Q) 添加到含有内含子的 tRNA 中。我们认为,逆行运输部分是由于剪接机制(细胞质)和修饰酶 TGT(细胞核)的细胞内定位不同所致。这些发现将逆行运输机制的进化分布扩展到包括早期分化的真核生物,同时强调了其对 queuosine 生物合成的重要性。