National Research Council of Canada , Ottawa, Ontario, Canada K1A 0R6.
Acc Chem Res. 2017 Oct 17;50(10):2479-2486. doi: 10.1021/acs.accounts.7b00234. Epub 2017 Sep 13.
Semiconducting single-walled carbon nanotubes (sc-SWCNTs) are emerging as a promising material for high-performance, high-density devices as well as low-cost, large-area macroelectronics produced via additive manufacturing methods such as roll-to-roll printing. Proof-of-concept demonstrations have indicated the potential of sc-SWCNTs for digital electronics, radiofrequency circuits, radiation hard memory, improved sensors, and flexible, stretchable, conformable electronics. Advances toward commercial applications bring numerous opportunities in SWCNT materials development and characterization as well as fabrication processes and printing technologies. Commercialization in electronics will require large quantities of sc-SWCNTs, and the challenge for materials science is the development of scalable synthesis, purification, and enrichment methods. While a few synthesis routes have shown promising results in making near-monochiral SWCNTs, gram quantities are available only for small-diameter sc-SWCNTs, which underperform in transistors. Most synthesis routes yield mixtures of SWCNTs, typically 30% metallic and 70% semiconducting, necessitating the extraction of sc-SWCNTs from their metallic counterparts in high purity using scalable postsynthetic methods. Numerous routes to obtain high-purity sc-SWCNTs from raw soot have been developed, including density-gradient ultracentrifugation, chromatography, aqueous two-phase extraction, and selective DNA or polymer wrapping. By these methods (termed sorting or enrichment), >99% sc-SWCNT content can be achieved. Currently, all of these approaches have drawbacks and limitations with respect to electronics applications, such as excessive dilution, expensive consumables, and high ionic impurity content. Excess amount of dispersant is a common challenge that hinders direct inclusion of sc-SWCNTs into electronic devices. At present, conjugated polymer extraction may represent the most practical route to sc-SWCNTs. By the use of polymers with a π-conjugated backbone, sc-SWCNTs with >99.9% purity can be dispersed in organic solvents via a simple sonication and centrifugation process. With 1000 times less excipient and the flexibility to accommodate a broad range of solvents via diverse polymer constructs, inks are readily deployable in solution-based fabrication processes such as aerosol spray, inkjet, and gravure. Further gains in sc-SWCNT purity, among other attributes, are possible with a better understanding of the structure-property relationships that govern conjugated polymer extraction. This Account covers three interlinked topics in SWCNT electronics: metrology, enrichment, and SWCNT transistors fabricated via solution processes. First, we describe how spectroscopic techniques such as optical absorption, fluorescence, and Raman spectroscopy are applied for sc-SWCNT purity assessment. Stringent requirements for sc-SWCNTs in electronics are pushing the techniques to new levels while serving as an important driver toward the development of quantitative metrology. Next, we highlight recent progress in understanding the sc-SWCNT enrichment process using conjugated polymers, with special consideration given to the effect of doping on the mechanism. Finally, developments in sc-SWCNT-based electronics are described, with emphasis on the performance of transistors utilizing random networks of sc-SWCNTs as the semiconducting channel material. Challenges and advances associated with using polymer-based dielectrics in the unique context of sc-SWCNT transistors are presented. Such transistor packages have enabled the realization of fully printed transistors as well as transparent and even stretchable transistors as a result of the unique and excellent electrical and mechanical properties of sc-SWCNTs.
半导体单壁碳纳米管(sc-SWCNTs)作为一种有前途的材料,正在成为高性能、高密度器件以及通过卷对卷印刷等添加剂制造方法生产的低成本、大面积宏观电子器件的材料。概念验证表明,sc-SWCNTs 具有用于数字电子、射频电路、辐射硬存储器、改进传感器以及柔性、可拉伸、适应性电子器件的潜力。朝着商业应用的进展带来了 SWCNT 材料开发和表征以及制造工艺和印刷技术的许多机会。电子产品的商业化将需要大量的 sc-SWCNTs,而材料科学的挑战是开发可扩展的合成、纯化和富集方法。虽然一些合成路线在制造近单手性 SWCNTs 方面显示出了有希望的结果,但仅可获得用于小直径 sc-SWCNTs 的克级数量,其在晶体管中的性能较差。大多数合成路线产生 SWCNTs 的混合物,通常 30%为金属,70%为半导体,因此需要使用可扩展的后合成方法从其金属对应物中以高纯度提取 sc-SWCNTs。已经开发了许多从原始烟尘中获得高纯度 sc-SWCNTs 的方法,包括密度梯度超速离心、色谱、水相两相间萃取和选择性 DNA 或聚合物包裹。通过这些方法(称为分类或富集),可以达到 >99%的 sc-SWCNT 含量。目前,所有这些方法在电子应用方面都存在缺点和局限性,例如过度稀释、昂贵的耗材和高离子杂质含量。分散剂的过量是一个常见的挑战,它阻碍了 sc-SWCNTs 直接纳入电子设备。目前,共轭聚合物提取可能代表 sc-SWCNTs 最实用的途径。通过使用具有π共轭主链的聚合物,可以通过简单的超声和离心过程将 sc-SWCNTs 分散在有机溶剂中。由于使用的赋形剂少 1000 倍,并且通过不同的聚合物结构可以适应多种溶剂,因此可以在基于溶液的制造工艺(如气溶胶喷雾、喷墨和凹版印刷)中轻松地使用油墨。通过更好地了解控制共轭聚合物提取的结构-性能关系,可以进一步提高 sc-SWCNT 的纯度和其他属性。本账户涵盖了 SWCNT 电子学中的三个相互关联的主题:计量学、富集和通过溶液工艺制造的 SWCNT 晶体管。首先,我们描述了如何应用光谱技术,如光学吸收、荧光和拉曼光谱,来评估 sc-SWCNT 的纯度。电子学对 sc-SWCNTs 的严格要求正在推动这些技术达到新的水平,同时也是推动定量计量学发展的重要动力。接下来,我们重点介绍了利用共轭聚合物理解 sc-SWCNT 富集过程的最新进展,特别考虑了掺杂对机制的影响。最后,描述了基于 sc-SWCNT 的电子学的发展,重点介绍了利用 sc-SWCNT 作为半导体沟道材料的随机网络晶体管的性能。介绍了与 sc-SWCNT 晶体管独特背景下使用聚合物基电介质相关的挑战和进展。由于 sc-SWCNTs 独特而优异的电学和机械性能,聚合物封装使完全印刷的晶体管以及透明甚至可拉伸的晶体管得以实现。