Suppr超能文献

基于热响应墨水的用于电化学能量存储的基于石墨烯的电极的多材料 3D 打印

Multimaterial 3D Printing of Graphene-Based Electrodes for Electrochemical Energy Storage Using Thermoresponsive Inks.

机构信息

School of Engineering, Cardiff University , Cardiff CF24 3AA, U.K.

School of Engineering & Materials Innovation Factory, University of Liverpool , Liverpool L69 3GH, U.K.

出版信息

ACS Appl Mater Interfaces. 2017 Oct 25;9(42):37136-37145. doi: 10.1021/acsami.7b10285. Epub 2017 Oct 11.

Abstract

The current lifestyles, increasing population, and limited resources result in energy research being at the forefront of worldwide grand challenges, increasing the demand for sustainable and more efficient energy devices. In this context, additive manufacturing brings the possibility of making electrodes and electrical energy storage devices in any desired three-dimensional (3D) shape and dimensions, while preserving the multifunctional properties of the active materials in terms of surface area and conductivity. This paves the way to optimized and more efficient designs for energy devices. Here, we describe how three-dimensional (3D) printing will allow the fabrication of bespoke devices, with complex geometries, tailored to fit specific requirements and applications, by designing water-based thermoresponsive inks to 3D-print different materials in one step, for example, printing the active material precursor (reduced chemically modified graphene (rCMG)) and the current collector (copper) for supercapacitors or anodes for lithium-ion batteries. The formulation of thermoresponsive inks using Pluronic F127 provides an aqueous-based, robust, flexible, and easily upscalable approach. The devices are designed to provide low resistance interface, enhanced electrical properties, mechanical performance, packing of rCMG, and low active material density while facilitating the postprocessing of the multicomponent 3D-printed structures. The electrode materials are selected to match postprocessing conditions. The reduction of the active material (rCMG) and sintering of the current collector (Cu) take place simultaneously. The electrochemical performance of the rCMG-based self-standing binder-free electrode and the two materials coupled rCMG/Cu printed electrode prove the potential of multimaterial printing in energy applications.

摘要

当前的生活方式、不断增长的人口和有限的资源导致能源研究成为全球重大挑战的前沿领域,这增加了对可持续和更高效能源设备的需求。在这种情况下,增材制造使得以任何所需的三维(3D)形状和尺寸制造电极和电能存储装置成为可能,同时保持了活性材料在表面积和导电性方面的多功能特性。这为能源设备的优化和更高效设计铺平了道路。在这里,我们描述了 3D 打印如何通过设计水基热敏油墨,一步法打印不同的材料,例如打印活性材料前体(化学还原修饰的石墨烯(rCMG))和集流器(铜),用于超级电容器或锂离子电池的阳极,从而允许制造定制设备,这些设备具有复杂的几何形状,可根据特定需求和应用进行定制。热敏油墨的配方使用 Pluronic F127 提供了一种基于水的、坚固的、灵活的、易于扩大规模的方法。该设计旨在提供低电阻界面、增强的电气性能、机械性能、rCMG 的包装和低活性材料密度,同时方便多组分 3D 打印结构的后处理。选择电极材料以匹配后处理条件。活性材料(rCMG)的还原和集流器(Cu)的烧结同时进行。rCMG 基自支撑无粘结剂电极和两种材料耦合 rCMG/Cu 打印电极的电化学性能证明了多材料打印在能源应用中的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验