Suppr超能文献

用于分析元流行病学数据的标签不变模型。

Label-invariant models for the analysis of meta-epidemiological data.

作者信息

Rhodes K M, Mawdsley D, Turner R M, Jones H E, Savović J, Higgins J P T

机构信息

MRC Biostatistics Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK.

University of Manchester, Manchester, UK.

出版信息

Stat Med. 2018 Jan 15;37(1):60-70. doi: 10.1002/sim.7491. Epub 2017 Sep 19.

Abstract

Rich meta-epidemiological data sets have been collected to explore associations between intervention effect estimates and study-level characteristics. Welton et al proposed models for the analysis of meta-epidemiological data, but these models are restrictive because they force heterogeneity among studies with a particular characteristic to be at least as large as that among studies without the characteristic. In this paper we present alternative models that are invariant to the labels defining the 2 categories of studies. To exemplify the methods, we use a collection of meta-analyses in which the Cochrane Risk of Bias tool has been implemented. We first investigate the influence of small trial sample sizes (less than 100 participants), before investigating the influence of multiple methodological flaws (inadequate or unclear sequence generation, allocation concealment, and blinding). We fit both the Welton et al model and our proposed label-invariant model and compare the results. Estimates of mean bias associated with the trial characteristics and of between-trial variances are not very sensitive to the choice of model. Results from fitting a univariable model show that heterogeneity variance is, on average, 88% greater among trials with less than 100 participants. On the basis of a multivariable model, heterogeneity variance is, on average, 25% greater among trials with inadequate/unclear sequence generation, 51% greater among trials with inadequate/unclear blinding, and 23% lower among trials with inadequate/unclear allocation concealment, although the 95% intervals for these ratios are very wide. Our proposed label-invariant models for meta-epidemiological data analysis facilitate investigations of between-study heterogeneity attributable to certain study characteristics.

摘要

已经收集了丰富的元流行病学数据集,以探索干预效果估计值与研究水平特征之间的关联。韦尔顿等人提出了用于分析元流行病学数据的模型,但这些模型具有局限性,因为它们强制具有特定特征的研究之间的异质性至少与没有该特征的研究之间的异质性一样大。在本文中,我们提出了对定义两类研究的标签不变的替代模型。为了举例说明这些方法,我们使用了一组实施了Cochrane偏倚风险工具的荟萃分析。我们首先调查小样本量试验(少于100名参与者)的影响,然后再调查多种方法学缺陷(序列生成不充分或不明确、分配隐藏和盲法)的影响。我们拟合了韦尔顿等人的模型和我们提出的标签不变模型,并比较了结果。与试验特征相关的平均偏倚估计值和试验间方差对模型的选择不是非常敏感。单变量模型拟合结果表明,参与者少于100名的试验中,异质性方差平均大88%。基于多变量模型,序列生成不充分/不明确的试验中,异质性方差平均大25%,盲法不充分/不明确的试验中,异质性方差平均大51%,分配隐藏不充分/不明确的试验中,异质性方差平均低23%,尽管这些比率的95%置信区间非常宽。我们提出的用于元流行病学数据分析的标签不变模型有助于研究归因于某些研究特征的研究间异质性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/407c/5724693/ca9fcb2b5d14/SIM-37-60-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验