Niu Mingyang, Fan Xibei, Zhuang Guangchao, Liang Qianyong, Wang Fengping
State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
State Key Laboratory of Ocean Engineering, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
FEMS Microbiol Ecol. 2017 Sep 1;93(9). doi: 10.1093/femsec/fix101.
Cold seeps are widespread chemosynthetic ecosystems in the deep-sea environment, and cold seep microbial communities of the South China Sea are poorly constrained. Here we report on the archaeal communities, particularly those involved in methane metabolization, in sediments of a newly discovered cold seep (named 'Haima') on the northwest slope of the South China Sea. Archaeal diversity, abundance and distribution were investigated in two piston cores collected from a seep area (QDN-14B) and a non-seep control site (QDN-31B). Geochemical investigation of the QDN-14B core identified an estimated sulfate-methane transition zone (Estimated SMTZ) at 300-400 cm below sea floor (cmbsf), where a high abundance of anaerobic methane-oxidizing archaea (ANME) occurred, as revealed by analysis of the 16S rRNA gene and the gene (mcrA) encoding the α-subunit of the key enzyme methyl-coenzyme M reductase. ANME-2a/b was predominant in the upper and middle layers of the estimated SMTZ, whereas ANME-1b outcompeted ANME-2 in the sulfate-depleted bottom layers of the estimated SMTZ and the methanogenic zone. Fine-scale phylogenetic analysis further divided the ANME-1b group into three subgroups with different distribution patterns: ANME-1bI, ANME-1bII and ANME-1bIII. Multivariate analyses indicated that dissolved inorganic carbon and sulfate may be important factors controlling the composition of the methane-metabolizing community. Our study on ANME niche separation and interactions with other archaeal groups improves our understanding of the metabolic diversity and flexibility of ANME, and the findings further suggest that ANME subgroups may have evolved diversified/specified metabolic capabilities other than syntrophic anaerobic oxidation of methane coupled with sulfate reduction in marine sediments.
冷泉是深海环境中广泛分布的化能合成生态系统,而南海冷泉微生物群落的情况却知之甚少。在此,我们报告了南海西北坡新发现的一个冷泉(命名为“海马”)沉积物中的古菌群落,特别是参与甲烷代谢的群落。我们对从一个冷泉区域(QDN - 14B)和一个非冷泉对照站点(QDN - 31B)采集的两个活塞岩芯中的古菌多样性、丰度和分布进行了研究。对QDN - 14B岩芯的地球化学研究确定,在海底以下300 - 400厘米处存在一个估计的硫酸盐 - 甲烷过渡带(Estimated SMTZ),通过对16S rRNA基因和编码关键酶甲基辅酶M还原酶α亚基的基因(mcrA)的分析发现,该区域存在高丰度的厌氧甲烷氧化古菌(ANME)。在估计的SMTZ的上层和中层,ANME - 2a/b占主导地位,而在估计的SMTZ的硫酸盐耗尽的底层和产甲烷区,ANME - 1b比ANME - 2更具优势。精细尺度的系统发育分析进一步将ANME - 1b组分为具有不同分布模式的三个亚组:ANME - 1bI、ANME - 1bII和ANME - 1bIII。多变量分析表明,溶解无机碳和硫酸盐可能是控制甲烷代谢群落组成的重要因素。我们对ANME生态位分离以及与其他古菌群体相互作用的研究,增进了我们对ANME代谢多样性和灵活性的理解,研究结果进一步表明,ANME亚组可能已经进化出了除海洋沉积物中与硫酸盐还原耦合的甲烷共生厌氧氧化之外的多样化/特定代谢能力。