Suppr超能文献

东海潮间带硫酸盐依赖型厌氧甲烷氧化的时空格局。

Spatial-Temporal Pattern of Sulfate-Dependent Anaerobic Methane Oxidation in an Intertidal Zone of the East China Sea.

机构信息

Department of Environmental Engineering, Zhejiang University, Hangzhou, China.

State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China

出版信息

Appl Environ Microbiol. 2019 Mar 22;85(7). doi: 10.1128/AEM.02638-18. Print 2019 Apr 1.

Abstract

Methane is a primary greenhouse gas which is responsible for global warming. The sulfate-dependent anaerobic methane oxidation (S-AOM) process catalyzed by aerobic thanotrophic (ANME) archaea and sulfate-reducing bacteria (SRB) is a vital link connecting the global carbon and sulfur cycles, and it is considered to be the overriding methane sink in marine ecosystem. However, there have been few studies regarding the role of S-AOM process and the distribution of ANME archaea in intertidal ecosystem. The intertidal zone is a buffer zone between sea and land and plays an important role in global geochemical cycle. In the present study, the abundance, potential methane oxidation rate, and community structure of ANME archaea in the intertidal zone were studied by quantitative PCR, stable isotope tracing method and high-throughput sequencing. The results showed that the potential S-AOM activity ranged from 0 to 0.77 nmol CO g (dry sediment) day The copy number of 16S rRNA gene of ANME archaea reached 10 ∼ 10 copies g (dry sediment). The average contribution of S-AOM to total anaerobic methane oxidation was up to 34.5%, while denitrifying anaerobic methane oxidation accounted for the rest, which implied that S-AOM process was an essential methane sink that cannot be overlooked in intertidal ecosystem. The simulated column experiments also indicated that ANME archaea were sensitive to oxygen and preferred anaerobic environmental conditions. This study will help us gain a better understanding of the global carbon-sulfur cycle and greenhouse gas emission reduction and introduce a new perspective into the enrichment of ANME archaea. The sulfate-dependent anaerobic methane oxidation (S-AOM) process catalyzed by aerobic thanotrophic (ANME) archaea and sulfate-reducing bacteria (SRB) is a vital link connecting the global carbon and sulfur cycles. We conducted a research into the spatial-temporal pattern of S-AOM process and the distribution of ANME archaea in coastal sediments collected from the intertidal zone. The results implied that S-AOM process was a methane sink that cannot be overlooked in the intertidal ecosystem. We also found that ANME archaea were sensitive to oxygen and preferred anaerobic environmental conditions. This study will help us gain a better understanding of the global carbon-sulfur cycle and greenhouse gas emission reduction and introduce a new perspective into the enrichment of ANME archaea.

摘要

甲烷是一种主要的温室气体,它是导致全球变暖的原因之一。硫酸盐依赖型厌氧甲烷氧化(S-AOM)过程由好氧化能异养菌(ANME)古菌和硫酸盐还原菌(SRB)共同催化,它是连接全球碳硫循环的重要环节,被认为是海洋生态系统中主要的甲烷汇。然而,关于 S-AOM 过程的作用以及 ANME 古菌在潮间带生态系统中的分布,研究仍较少。潮间带是海陆之间的缓冲区,在全球地球化学循环中起着重要作用。在本研究中,通过定量 PCR、稳定同位素示踪法和高通量测序研究了潮间带中 ANME 古菌的丰度、潜在甲烷氧化速率和群落结构。结果表明,S-AOM 活性范围为 0 至 0.77nmol CO g(干沉积物)d。ANME 古菌 16S rRNA 基因的拷贝数达到了 10 ∼ 10 拷贝 g(干沉积物)。S-AOM 对总厌氧甲烷氧化的平均贡献高达 34.5%,而反硝化厌氧甲烷氧化则占其余部分,这表明 S-AOM 过程是潮间带生态系统中不可忽视的重要甲烷汇。模拟柱实验也表明,ANME 古菌对氧气敏感,更喜欢厌氧环境条件。本研究将有助于我们更好地了解全球碳硫循环和温室气体减排,并为 ANME 古菌的富集提供新的视角。

相似文献

1
Spatial-Temporal Pattern of Sulfate-Dependent Anaerobic Methane Oxidation in an Intertidal Zone of the East China Sea.
Appl Environ Microbiol. 2019 Mar 22;85(7). doi: 10.1128/AEM.02638-18. Print 2019 Apr 1.
2
On the relationship between methane production and oxidation by anaerobic methanotrophic communities from cold seeps of the Gulf of Mexico.
Environ Microbiol. 2008 May;10(5):1108-17. doi: 10.1111/j.1462-2920.2007.01526.x. Epub 2008 Jan 23.
3
Community Structure and Microbial Associations in Sediment-Free Methanotrophic Enrichment Cultures from a Marine Methane Seep.
Appl Environ Microbiol. 2022 Jun 14;88(11):e0210921. doi: 10.1128/aem.02109-21. Epub 2022 May 23.
4
Thermophilic anaerobic oxidation of methane by marine microbial consortia.
ISME J. 2011 Dec;5(12):1946-56. doi: 10.1038/ismej.2011.77. Epub 2011 Jun 23.
5
Microbial diversity and community structure of a highly active anaerobic methane-oxidizing sulfate-reducing enrichment.
Environ Microbiol. 2009 Dec;11(12):3223-32. doi: 10.1111/j.1462-2920.2009.02036.x. Epub 2009 Aug 24.
6
Denitrifying Anaerobic Methane Oxidation: A Previously Overlooked Methane Sink in Intertidal Zone.
Environ Sci Technol. 2019 Jan 2;53(1):203-212. doi: 10.1021/acs.est.8b05742. Epub 2018 Dec 17.
7
Anaerobic Methane-Oxidizing Microbial Community in a Coastal Marine Sediment: Anaerobic Methanotrophy Dominated by ANME-3.
Microb Ecol. 2017 Oct;74(3):608-622. doi: 10.1007/s00248-017-0978-y. Epub 2017 Apr 7.
8
Enrichment of anaerobic methanotrophs in sulfate-reducing membrane bioreactors.
Biotechnol Bioeng. 2009 Oct 15;104(3):458-70. doi: 10.1002/bit.22412.
9
Environmental regulation of the anaerobic oxidation of methane: a comparison of ANME-I and ANME-II communities.
Environ Microbiol. 2005 Jan;7(1):98-106. doi: 10.1111/j.1462-2920.2004.00669.x.
10
Biogeochemical and molecular signatures of anaerobic methane oxidation in a marine sediment.
Appl Environ Microbiol. 2001 Apr;67(4):1646-56. doi: 10.1128/AEM.67.4.1646-1656.2001.

引用本文的文献

本文引用的文献

1
Regulation of coastal methane sinks by a structured gradient of microbial methane oxidizers.
Environ Pollut. 2019 Jan;244:228-237. doi: 10.1016/j.envpol.2018.10.057. Epub 2018 Oct 14.
3
Microbiological and environmental significance of metal-dependent anaerobic oxidation of methane.
Sci Total Environ. 2018 Jan 1;610-611:759-768. doi: 10.1016/j.scitotenv.2017.08.140. Epub 2017 Aug 19.
4
Anaerobic Methane-Oxidizing Microbial Community in a Coastal Marine Sediment: Anaerobic Methanotrophy Dominated by ANME-3.
Microb Ecol. 2017 Oct;74(3):608-622. doi: 10.1007/s00248-017-0978-y. Epub 2017 Apr 7.
5
Energy Metabolism during Anaerobic Methane Oxidation in ANME Archaea.
Microbes Environ. 2017 Mar 31;32(1):5-13. doi: 10.1264/jsme2.ME16166. Epub 2017 Mar 17.
6
Reverse Methanogenesis and Respiration in Methanotrophic Archaea.
Archaea. 2017 Jan 5;2017:1654237. doi: 10.1155/2017/1654237. eCollection 2017.
7
Archaea catalyze iron-dependent anaerobic oxidation of methane.
Proc Natl Acad Sci U S A. 2016 Nov 8;113(45):12792-12796. doi: 10.1073/pnas.1609534113. Epub 2016 Oct 24.
8
Methane production, oxidation and mitigation: A mechanistic understanding and comprehensive evaluation of influencing factors.
Sci Total Environ. 2016 Dec 1;572:874-896. doi: 10.1016/j.scitotenv.2016.07.182. Epub 2016 Aug 27.
9
MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets.
Mol Biol Evol. 2016 Jul;33(7):1870-4. doi: 10.1093/molbev/msw054. Epub 2016 Mar 22.
10
Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria.
Nature. 2015 Oct 22;526(7574):587-90. doi: 10.1038/nature15733.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验