Suppr超能文献

肺感染反应中肺泡上皮细胞 II 型蛋白组调制的定量分析。

Quantitative Analysis of Proteome Modulations in Alveolar Epithelial Type II Cells in Response to Pulmonary Infection.

机构信息

From the ‡University Duisburg-Essen, University Hospital, Institute for Experimental Immunology and Imaging, 45147 Essen; Germany.

¶Ruhr-Universität Bochum, Medizinisches Proteom-Center, 44801 Bochum, Germany.

出版信息

Mol Cell Proteomics. 2017 Dec;16(12):2184-2198. doi: 10.1074/mcp.RA117.000072. Epub 2017 Sep 26.

Abstract

The ubiquitous mold threatens immunosuppressed patients as inducer of lethal invasive aspergillosis. conidia are airborne and reach the alveoli, where they encounter alveolar epithelial cells (AEC). Previous studies reported the importance of the surfactant-producing AEC II during infection experiments using cell lines. We established a negative isolation protocol yielding untouched primary murine AEC II with a purity >90%, allowing analyses of the cells, which encountered the mold By label-free proteome analysis of AEC II isolated from mice 24h after or mock infection we quantified 2256 proteins and found 154 proteins to be significantly differentially abundant between both groups (ANOVA value ≤ 0.01, ratio of means ≥1.5 or ≤0.67, quantified with ≥2 peptides). Most of these proteins were higher abundant in the infected condition and reflected a comprehensive activation of AEC II on interaction with This was especially represented by proteins related to oxidative phosphorylation, hence energy production. However, the most strongly induced protein was the l-amino acid oxidase (LAAO) Interleukin 4 induced 1 (IL4I1) with a 42.9 fold higher abundance (ANOVA value 2.91). IL4I1 has previously been found in B cells, macrophages, dendritic cells and rare neurons. Increased IL4I1 abundance in AEC II was confirmed by qPCR, Western blot and immunohistology. Furthermore, infected lungs showed high levels of IL4I1 metabolic products. Importantly, higher IL4I1 abundance was also confirmed in lung tissue from human aspergilloma. Because LAAO are key enzymes for bactericidal product generation, AEC II might actively participate in pathogen defense. We provide insights into proteome changes of primary AEC II thereby opening new avenues to analyze the molecular changes of this central lung cell on infectious threats. Data are available ProteomeXchange with identifier PXD005834.

摘要

无处不在的霉菌对免疫抑制患者构成威胁,可引发致命的侵袭性曲霉菌病。分生孢子是空气传播的,到达肺泡,在那里它们遇到肺泡上皮细胞 (AEC)。以前的研究报告称,在使用细胞系进行感染实验时,产生表面活性剂的 AEC II 非常重要。我们建立了一种阴性分离方案,可获得纯度 >90%的未受干扰的原代小鼠 AEC II,从而可以分析遇到霉菌的细胞。通过对 24 小时后感染或模拟感染的小鼠分离的 AEC II 进行无标记蛋白质组分析,我们定量了 2256 种蛋白质,发现两组之间有 154 种蛋白质的丰度存在显著差异(ANOVA 值 ≤ 0.01,平均值之比≥1.5 或≤0.67,用≥2 种肽定量)。这些蛋白质中的大多数在感染条件下丰度更高,反映了 AEC II 与曲霉菌相互作用时的全面激活。这尤其表现在与氧化磷酸化相关的蛋白质上,因此与能量产生有关。然而,丰度增加最多的蛋白质是 L-氨基酸氧化酶 (LAAO) 白细胞介素 4 诱导 1 (IL4I1),丰度增加了 42.9 倍(ANOVA 值 2.91)。以前在 B 细胞、巨噬细胞、树突状细胞和罕见神经元中发现过 IL4I1。通过 qPCR、Western blot 和免疫组织化学证实了 AEC II 中 IL4I1 丰度的增加。此外,感染的肺部显示出高水平的 IL4I1 代谢产物。重要的是,在人类曲霉菌瘤的肺组织中也证实了更高的 IL4I1 丰度。因为 LAAO 是杀菌产物生成的关键酶,AEC II 可能会积极参与病原体防御。我们提供了对原代 AEC II 蛋白质组变化的深入了解,从而为分析这种中央肺细胞对感染威胁的分子变化开辟了新途径。数据可在 ProteomeXchange 中使用标识符 PXD005834 获得。

相似文献

1
Quantitative Analysis of Proteome Modulations in Alveolar Epithelial Type II Cells in Response to Pulmonary Infection.
Mol Cell Proteomics. 2017 Dec;16(12):2184-2198. doi: 10.1074/mcp.RA117.000072. Epub 2017 Sep 26.
4
Endocytic Markers Associated with the Internalization and Processing of Conidia by BEAS-2B Cells.
mSphere. 2019 Feb 6;4(1):e00663-18. doi: 10.1128/mSphere.00663-18.
5
FleA Expression in Aspergillus fumigatus Is Recognized by Fucosylated Structures on Mucins and Macrophages to Prevent Lung Infection.
PLoS Pathog. 2016 Apr 8;12(4):e1005555. doi: 10.1371/journal.ppat.1005555. eCollection 2016 Apr.
6
Proteomic Analysis of Humoral Immune Components in Bronchoalveolar Lavage of Patients Infected or Colonized by .
Front Immunol. 2021 May 26;12:677798. doi: 10.3389/fimmu.2021.677798. eCollection 2021.
7
iTRAQ‑based proteomic analysis of the interaction of A549 human lung epithelial cells with Aspergillus fumigatus conidia.
Mol Med Rep. 2020 Dec;22(6):4601-4610. doi: 10.3892/mmr.2020.11582. Epub 2020 Oct 11.
9
Use of a human small airway epithelial cell line to study the interactions of with pulmonary epithelial cells.
mSphere. 2023 Oct 24;8(5):e0031423. doi: 10.1128/msphere.00314-23. Epub 2023 Aug 14.

引用本文的文献

1
Early Life Exposure to Deltamethrin Impairs Synaptic Function by Altering the Brain-Derived Extracellular Vesicle Proteome.
Mol Cell Proteomics. 2025 Feb;24(2):100902. doi: 10.1016/j.mcpro.2024.100902. Epub 2024 Dec 31.
2
IL-4-Induced Gene 1: A Potential Player in Myocardial Infarction.
Rev Cardiovasc Med. 2024 Sep 20;25(9):337. doi: 10.31083/j.rcm2509337. eCollection 2024 Sep.
4
Proteomic analysis reveals changes in the proteome of human THP-1 macrophages infected with .
Front Cell Infect Microbiol. 2023 Nov 16;13:1275954. doi: 10.3389/fcimb.2023.1275954. eCollection 2023.
6
PROTEOMAS: a workflow enabling harmonized proteomic meta-analysis and proteomic signature mapping.
J Cheminform. 2023 Mar 19;15(1):34. doi: 10.1186/s13321-023-00710-2.
8
Metabolomics Strategy Assisted by Transcriptomics Analysis to Identify Potential Biomarkers Associated with Tuberculosis.
Infect Drug Resist. 2021 Nov 15;14:4795-4807. doi: 10.2147/IDR.S330493. eCollection 2021.
9
Proteomics Landscape of Host-Pathogen Interaction in Infected Mouse Lung.
Front Genet. 2021 May 7;12:563516. doi: 10.3389/fgene.2021.563516. eCollection 2021.

本文引用的文献

1
PANTHER version 11: expanded annotation data from Gene Ontology and Reactome pathways, and data analysis tool enhancements.
Nucleic Acids Res. 2017 Jan 4;45(D1):D183-D189. doi: 10.1093/nar/gkw1138. Epub 2016 Nov 29.
2
Quantitative Secretome Analysis of Activated Jurkat Cells Using Click Chemistry-Based Enrichment of Secreted Glycoproteins.
J Proteome Res. 2017 Jan 6;16(1):137-146. doi: 10.1021/acs.jproteome.6b00575. Epub 2016 Oct 19.
3
The anti-Aspergillus drug pipeline: Is the glass half full or empty?
Med Mycol. 2017 Jan 1;55(1):118-124. doi: 10.1093/mmy/myw060. Epub 2016 Aug 25.
4
CD11c.DTR mice develop a fatal fulminant myocarditis after local or systemic treatment with diphtheria toxin.
Eur J Immunol. 2016 Aug;46(8):2028-42. doi: 10.1002/eji.201546245. Epub 2016 Jun 8.
6
Interactions of Aspergillus fumigatus Conidia with Airway Epithelial Cells: A Critical Review.
Front Microbiol. 2016 Apr 7;7:472. doi: 10.3389/fmicb.2016.00472. eCollection 2016.
7
ImmunoPET/MR imaging allows specific detection of Aspergillus fumigatus lung infection in vivo.
Proc Natl Acad Sci U S A. 2016 Feb 23;113(8):E1026-33. doi: 10.1073/pnas.1518836113. Epub 2016 Jan 19.
8
Alterations of the immunosuppressive IL4I1 enzyme activity induced by naturally occurring SNP/mutations.
Genes Immun. 2016 Mar;17(2):148-52. doi: 10.1038/gene.2015.55. Epub 2015 Dec 17.
9
Transcriptome Profiles of Human Lung Epithelial Cells A549 Interacting with Aspergillus fumigatus by RNA-Seq.
PLoS One. 2015 Aug 14;10(8):e0135720. doi: 10.1371/journal.pone.0135720. eCollection 2015.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验