Suppr超能文献

嵌合抗原受体中 4-1BB 共刺激会阻碍 T 细胞存活,且具有载体依赖性。

Tonic 4-1BB Costimulation in Chimeric Antigen Receptors Impedes T Cell Survival and Is Vector-Dependent.

机构信息

Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston Methodist Hospital, Houston, TX 77030, USA; Department of Bioengineering and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.

Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston Methodist Hospital, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Center for Human Immunobiology, Texas Children's Hospital, Houston, TX 77030, USA.

出版信息

Cell Rep. 2017 Oct 3;21(1):17-26. doi: 10.1016/j.celrep.2017.09.015.

Abstract

Antigen-independent tonic signaling by chimeric antigen receptors (CARs) can increase differentiation and exhaustion of T cells, limiting their potency. Incorporating 4-1BB costimulation in CARs may enable T cells to resist this functional exhaustion; however, the potential ramifications of tonic 4-1BB signaling in CAR T cells remain unclear. Here, we found that tonic CAR-derived 4-1BB signaling can produce toxicity in T cells via continuous TRAF2-dependent activation of the nuclear factor κB (NF-κB) pathway and augmented FAS-dependent cell death. This mechanism was amplified in a non-self-inactivating gammaretroviral vector through positive feedback on the long terminal repeat (LTR) promoter, further enhancing CAR expression and tonic signaling. Attenuating CAR expression by substitution with a self-inactivating lentiviral vector minimized tonic signaling and improved T cell expansion and anti-tumor function. These studies illuminate the interaction between tonic CAR signaling and the chosen expression platform and identify inhibitory properties of the 4-1BB costimulatory domain that have direct implications for rational CAR design.

摘要

嵌合抗原受体(CARs)的非抗原依赖性持续信号转导可增加 T 细胞的分化和耗竭,从而限制其效力。在 CAR 中纳入 4-1BB 共刺激作用可能使 T 细胞能够抵抗这种功能耗竭;然而,CAR T 细胞中持续的 4-1BB 信号转导的潜在后果尚不清楚。在这里,我们发现通过持续的 TRAF2 依赖性核因子 κB(NF-κB)途径激活和增强的 FAS 依赖性细胞死亡,持续的 CAR 衍生的 4-1BB 信号转导可在 T 细胞中产生毒性。该机制通过对长末端重复(LTR)启动子的正反馈在非自我失活的γ逆转录病毒载体中放大,进一步增强了 CAR 的表达和持续信号转导。通过用自我失活的慢病毒载体替代来减弱 CAR 表达,可最大限度地减少持续信号转导,并改善 T 细胞扩增和抗肿瘤功能。这些研究阐明了持续的 CAR 信号转导与所选表达平台之间的相互作用,并确定了 4-1BB 共刺激结构域的抑制特性,这对合理的 CAR 设计具有直接意义。

相似文献

2
4-1BB enhancement of CAR T function requires NF-κB and TRAFs.
JCI Insight. 2018 Sep 20;3(18). doi: 10.1172/jci.insight.121322.
3
4-1BB costimulation promotes CAR T cell survival through noncanonical NF-κB signaling.
Sci Signal. 2020 Mar 31;13(625):eaay8248. doi: 10.1126/scisignal.aay8248.
4
Reversible Transgene Expression Reduces Fratricide and Permits 4-1BB Costimulation of CAR T Cells Directed to T-cell Malignancies.
Cancer Immunol Res. 2018 Jan;6(1):47-58. doi: 10.1158/2326-6066.CIR-17-0126. Epub 2017 Oct 27.
5
Optimized depletion of chimeric antigen receptor T cells in murine xenograft models of human acute myeloid leukemia.
Blood. 2017 Apr 27;129(17):2395-2407. doi: 10.1182/blood-2016-08-736041. Epub 2017 Feb 28.
7
Combined CD28 and 4-1BB Costimulation Potentiates Affinity-tuned Chimeric Antigen Receptor-engineered T Cells.
Clin Cancer Res. 2019 Jul 1;25(13):4014-4025. doi: 10.1158/1078-0432.CCR-18-2559. Epub 2019 Apr 12.
9
4-1BB Signaling Boosts the Anti-Tumor Activity of CD28-Incorporated 2 Generation Chimeric Antigen Receptor-Modified T Cells.
Front Immunol. 2020 Nov 13;11:539654. doi: 10.3389/fimmu.2020.539654. eCollection 2020.

引用本文的文献

2
Immunosenescence: signaling pathways, diseases and therapeutic targets.
Signal Transduct Target Ther. 2025 Aug 6;10(1):250. doi: 10.1038/s41392-025-02371-z.
3
Optimization of lentiviral delivery of barcoded anti-CD20 chimeric antigen receptors into rhesus macaque and human natural killer cells.
Mol Ther Methods Clin Dev. 2025 Apr 18;33(2):101473. doi: 10.1016/j.omtm.2025.101473. eCollection 2025 Jun 12.
4
Differential susceptibility and role for senescence in CART cells based on costimulatory domains.
Mol Cancer. 2025 Jun 10;24(1):172. doi: 10.1186/s12943-025-02371-1.
5
Anti-viral CD8 central memory veto cells as a new platform for CAR T cell therapy.
Stem Cells Transl Med. 2025 May 31;14(6). doi: 10.1093/stcltm/szaf020.
6
Optimizing viral transduction in immune cell therapy manufacturing: key process design considerations.
J Transl Med. 2025 May 2;23(1):501. doi: 10.1186/s12967-025-06524-0.
7
Tailoring CAR surface density and dynamics to improve CAR-T cell therapy.
J Immunother Cancer. 2025 Apr 29;13(4):e010702. doi: 10.1136/jitc-2024-010702.
8
CAR Binders Affect CAR T-cell Tonic Signaling, Durability, and Sensitivity to Target.
Cancer Immunol Res. 2025 Jun 4;13(6):867-880. doi: 10.1158/2326-6066.CIR-24-1347.
9
Library-based single-cell analysis of CAR signaling reveals drivers of in vivo persistence.
Cell Syst. 2025 May 21;16(5):101260. doi: 10.1016/j.cels.2025.101260. Epub 2025 Apr 10.
10
A novel mannan-specific chimeric antigen receptor M-CAR redirects T cells to interact with spp. hyphae and spores.
Bioengineered. 2025 Dec;16(1):2458786. doi: 10.1080/21655979.2025.2458786. Epub 2025 Feb 1.

本文引用的文献

1
CD7-edited T cells expressing a CD7-specific CAR for the therapy of T-cell malignancies.
Blood. 2017 Jul 20;130(3):285-296. doi: 10.1182/blood-2017-01-761320. Epub 2017 May 24.
2
Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection.
Nature. 2017 Mar 2;543(7643):113-117. doi: 10.1038/nature21405. Epub 2017 Feb 22.
3
CD19 CAR-T cells of defined CD4+:CD8+ composition in adult B cell ALL patients.
J Clin Invest. 2016 Jun 1;126(6):2123-38. doi: 10.1172/JCI85309. Epub 2016 Apr 25.
4
T cell responses to cytomegalovirus.
Nat Rev Immunol. 2016 Jun;16(6):367-77. doi: 10.1038/nri.2016.38. Epub 2016 Apr 25.
7
Identification of chimeric antigen receptors that mediate constitutive or inducible proliferation of T cells.
Cancer Immunol Res. 2015 Apr;3(4):356-67. doi: 10.1158/2326-6066.CIR-14-0186. Epub 2015 Jan 19.
9
COSMID: A Web-based Tool for Identifying and Validating CRISPR/Cas Off-target Sites.
Mol Ther Nucleic Acids. 2014 Dec 2;3(12):e214. doi: 10.1038/mtna.2014.64.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验