Suppr超能文献

将模型化空气污染暴露的测量误差纳入流行病学分析中。

Incorporating Measurement Error from Modeled Air Pollution Exposures into Epidemiological Analyses.

机构信息

Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str, 115 27, Athens, Greece.

Population Health Research Institute and MRC-PHE Centre for Environment and Health, St George's, University of London, London, UK.

出版信息

Curr Environ Health Rep. 2017 Dec;4(4):472-480. doi: 10.1007/s40572-017-0160-1.

Abstract

PURPOSE OF REVIEW

Outdoor air pollution exposures used in epidemiological studies are commonly predicted from spatiotemporal models incorporating limited measurements, temporal factors, geographic information system variables, and/or satellite data. Measurement error in these exposure estimates leads to imprecise estimation of health effects and their standard errors. We reviewed methods for measurement error correction that have been applied in epidemiological studies that use model-derived air pollution data.

RECENT FINDINGS

We identified seven cohort studies and one panel study that have employed measurement error correction methods. These methods included regression calibration, risk set regression calibration, regression calibration with instrumental variables, the simulation extrapolation approach (SIMEX), and methods under the non-parametric or parameter bootstrap. Corrections resulted in small increases in the absolute magnitude of the health effect estimate and its standard error under most scenarios. Limited application of measurement error correction methods in air pollution studies may be attributed to the absence of exposure validation data and the methodological complexity of the proposed methods. Future epidemiological studies should consider in their design phase the requirements for the measurement error correction method to be later applied, while methodological advances are needed under the multi-pollutants setting.

摘要

目的综述

在流行病学研究中,户外空气污染暴露通常是通过时空模型来预测的,这些模型包含有限的测量值、时间因素、地理信息系统变量和/或卫星数据。这些暴露估计中的测量误差会导致健康影响及其标准误差的估计不精确。我们综述了已应用于使用模型推导的空气污染数据的流行病学研究中的测量误差校正方法。

最近的发现

我们确定了七项队列研究和一项面板研究,这些研究采用了测量误差校正方法。这些方法包括回归校准、风险集回归校准、具有工具变量的回归校准、模拟外推法(SIMEX)以及非参数或参数引导下的方法。在大多数情况下,校正后健康影响估计值及其标准误差的绝对值略有增加。由于缺乏暴露验证数据以及所提出方法的方法学复杂性,空气污染研究中对测量误差校正方法的应用有限。未来的流行病学研究应在设计阶段考虑以后要应用的测量误差校正方法的要求,同时需要在多污染物环境下进行方法学上的改进。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验