Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, USA.
Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.
Oncogene. 2018 Jan 25;37(4):534-543. doi: 10.1038/onc.2017.353. Epub 2017 Oct 9.
Histone H3 lysine-9 (H3K9) methylation is essential for retinoblastoma protein (RB)-mediated heterochromatin formation, epigenetic silencing of S-phase genes and permanent cell cycle arrest or cellular senescence. Besides as an H3K4 demethylase, lysine-specific demethylase-1 (LSD1) has been shown to promote H3K9 demethylation. However, it is unexplored whether LSD1 has a causal role in regulating cell cycle entry and senescence. Here we demonstrate that genetic depletion or pharmacological inhibition of LSD1 triggers G1 arrest and cellular senescence. Genome-wide chromatin immunoprecipitation-sequencing analysis reveals that LSD1 binding sites overlap significantly with those bound by the S-phase gene transcription factor E2F1. Gene ontology analysis demonstrates that a large portion of E2F1 and LSD1 cotargeted genes are involved in cell cycle and proliferation. Further analyses show that depletion of LSD1 increases the level of H3K9me2 and thereby represses expression of the LSD1-E2F1 cotarget genes, but has no effects on H3K4me2 level in those loci. In contrast, knockdown of the H3K4me2 reader PHF8 decreases the H3K4me2 level at the LSD1-E2F1 cotargeted loci, but this effect is rescued by codepletion of LSD1. Furthermore, the enzymatic activity of LSD1 is essential for H3K9me2 demethylation at cell cycle gene loci. Notably, cotreatment of chemotherapeutic agent camptothecin enhanced LSD1 inhibitor-induced senescence and growth inhibition of cancer cells in vitro and in mice. Our data reveal LSD1 as a molecular rheostat selectively regulating H3K9 demethylation at cell cycle gene loci, thereby representing a key player in oncogenesis and a viable target for cancer therapy.
组蛋白 H3 赖氨酸-9(H3K9)甲基化对于视网膜母细胞瘤蛋白(RB)介导的异染色质形成、S 期基因的表观遗传沉默以及细胞周期的永久性阻滞或细胞衰老至关重要。除了作为一种 H3K4 去甲基化酶,赖氨酸特异性去甲基化酶 1(LSD1)已被证明可以促进 H3K9 的去甲基化。然而,LSD1 是否在调节细胞周期进入和衰老中起因果作用尚不清楚。在这里,我们证明 LSD1 的基因缺失或药理学抑制会触发 G1 期阻滞和细胞衰老。全基因组染色质免疫沉淀测序分析表明,LSD1 的结合位点与 S 期基因转录因子 E2F1 的结合位点有很大的重叠。基因本体分析表明,E2F1 和 LSD1 的大部分共同靶基因参与细胞周期和增殖。进一步的分析表明,LSD1 的缺失增加了 H3K9me2 的水平,从而抑制了 LSD1-E2F1 共同靶基因的表达,但对这些基因座上的 H3K4me2 水平没有影响。相比之下,PHF8(一种 H3K4me2 阅读器)的敲低降低了 LSD1-E2F1 共同靶基因位点上的 H3K4me2 水平,但这种效应可以通过 LSD1 的共缺失来挽救。此外,LSD1 的酶活性对于细胞周期基因座上的 H3K9me2 去甲基化至关重要。值得注意的是,化学治疗剂喜树碱的联合治疗增强了 LSD1 抑制剂诱导的癌细胞衰老和生长抑制,无论是在体外还是在小鼠体内。我们的数据揭示 LSD1 作为一种分子变阻器,选择性地调节细胞周期基因座上的 H3K9 去甲基化,因此它是致癌作用的关键参与者,也是癌症治疗的可行靶点。