College of Chemical Engineering, Nanjing University of Science and Technology, 210094 Nanjing, China.
College of Chemical Engineering, Nanjing University of Science and Technology, 210094 Nanjing, China.
J Colloid Interface Sci. 2018 Feb 1;511:285-295. doi: 10.1016/j.jcis.2017.10.002. Epub 2017 Oct 3.
In this work, N-alkylated poly (4-vinylpyridine) (NPVP), a cationic polymer, was firstly applied for the surface modification of FeO nanoparticles. Then the modified FeO nanoparticles (FeO@NPVP NPs) combined with graphene oxide (GO) through simple electrostatic binding. Subsequently, deposited Ag nanoparticles (Ag NPs) procedure was carried out to form the multiple antibacterial nanocomposites (GO-FeO@NPVP-Ag). The synthesized nanostructures were well characterized by Transmission Electron Microscope (TEM), X-ray powder diffraction (XRD), Fourier-transform infrared (FT-IR) and Raman spectroscopy. The zeta potentialmeasurement showed that the novel antibacterial nanocomposites exhibited a capacity of reversing its surface charge from negative (physiological pH) to positive (acidic condition). Furthermore, the incorporation of magnetic FeO NPs into the nanosystems facilitates the cyclic utilization of GO-FeO@NPVP-Ag by magnetic separation. The antibacterial properties of GO-FeO@NPVP-Ag nanocomposites were evaluated with Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus. Moreover, the cytotoxicity of GO-FeO@NPVP-Ag nanocomposites was studied using NIH-3T3 cells. The results showed that the GO-FeO@NPVP-Ag nanocomposites exhibited excellent antibacterial properties and low cytotoxicity, thus confirming its application as a promising rapid bactericide in various antibacterial fields.
在这项工作中,首次将 N-烷基化聚(4-乙烯基吡啶)(NPVP),一种阳离子聚合物,应用于 FeO 纳米粒子的表面改性。然后,通过简单的静电结合将改性的 FeO 纳米粒子(FeO@NPVP NPs)与氧化石墨烯(GO)结合。随后,进行沉积银纳米粒子(Ag NPs)的程序,以形成多种抗菌纳米复合材料(GO-FeO@NPVP-Ag)。通过透射电子显微镜(TEM)、X 射线粉末衍射(XRD)、傅里叶变换红外(FT-IR)和拉曼光谱对合成的纳米结构进行了很好的表征。通过zeta 电位测量显示,新型抗菌纳米复合材料表现出将其表面电荷从负(生理 pH)反转到正(酸性条件)的能力。此外,将磁性 FeO NPs 掺入纳米系统中,通过磁分离促进了 GO-FeO@NPVP-Ag 的循环利用。通过革兰氏阴性大肠杆菌和革兰氏阳性金黄色葡萄球菌评估了 GO-FeO@NPVP-Ag 纳米复合材料的抗菌性能。此外,使用 NIH-3T3 细胞研究了 GO-FeO@NPVP-Ag 纳米复合材料的细胞毒性。结果表明,GO-FeO@NPVP-Ag 纳米复合材料表现出优异的抗菌性能和低细胞毒性,从而证实其作为一种有前途的快速杀菌剂在各种抗菌领域的应用。