Suppr超能文献

全长蛋白质-蛋白质相互作用的高通量化学探测

High-Throughput Chemical Probing of Full-Length Protein-Protein Interactions.

作者信息

Song James M, Menon Arya, Mitchell Dylan C, Johnson Oleta T, Garner Amanda L

机构信息

Program in Chemical Biology and ‡Department of Medicinal Chemistry, College of Pharmacy, University of Michigan , Ann Arbor, Michigan 48109, United States.

出版信息

ACS Comb Sci. 2017 Dec 11;19(12):763-769. doi: 10.1021/acscombsci.7b00128. Epub 2017 Nov 14.

Abstract

Human biology is regulated by a complex network of protein-protein interactions (PPIs), and disruption of this network has been implicated in many diseases. However, the targeting of PPIs remains a challenging area for chemical probe and drug discovery. Although many methodologies have been put forth to facilitate these efforts, new technologies are still needed. Current biochemical assays for PPIs are typically limited to motif-domain and domain-domain interactions, and assays that will enable the screening of full-length protein systems, which are more biologically relevant, are sparse. To overcome this barrier, we have developed a new assay technology, "PPI catalytic enzyme-linked click chemistry assay" or PPI cat-ELCCA, which utilizes click chemistry to afford catalytic signal amplification. To validate this approach, we have applied PPI cat-ELCCA to the eIF4E-4E-BP1  and eIF4E-eIF4G PPIs, key regulators of cap-dependent mRNA translation. Using these examples, we have demonstrated that PPI cat-ELCCA is amenable to full-length proteins, large (>200 kDa) and small (∼12 kDa), and is readily adaptable to automated high-throughput screening. Thus, PPI cat-ELCCA represents a powerful new tool in the toolbox of assays available to scientists interested in the targeting of disease-relevant PPIs.

摘要

人类生物学受蛋白质-蛋白质相互作用(PPI)的复杂网络调控,该网络的破坏与多种疾病有关。然而,针对PPI进行化学探针和药物开发仍是一个具有挑战性的领域。尽管已经提出了许多方法来推动这些工作,但仍需要新技术。目前用于PPI的生化检测通常仅限于基序-结构域和结构域-结构域相互作用,而能够筛选更具生物学相关性的全长蛋白质系统的检测方法却很少。为了克服这一障碍,我们开发了一种新的检测技术,即“PPI催化酶联点击化学检测法”或PPI cat-ELCCA,它利用点击化学实现催化信号放大。为了验证这种方法,我们将PPI cat-ELCCA应用于帽依赖性mRNA翻译的关键调节因子eIF4E-4E-BP1和eIF4E-eIF4G的PPI。通过这些例子,我们证明了PPI cat-ELCCA适用于全长蛋白质,包括大的(>200 kDa)和小的(约12 kDa),并且易于适应自动化高通量筛选。因此,PPI cat-ELCCA是对靶向疾病相关PPI感兴趣的科学家可用检测方法工具箱中的一个强大新工具。

相似文献

1
High-Throughput Chemical Probing of Full-Length Protein-Protein Interactions.
ACS Comb Sci. 2017 Dec 11;19(12):763-769. doi: 10.1021/acscombsci.7b00128. Epub 2017 Nov 14.
2
cat-ELCCA: catalyzing drug discovery through click chemistry.
Chem Commun (Camb). 2018 Jun 19;54(50):6531-6539. doi: 10.1039/c8cc02332h.
3
Expansion of cat-ELCCA for the Discovery of Small Molecule Inhibitors of the Pre-let-7-Lin28 RNA-Protein Interaction.
ACS Med Chem Lett. 2018 May 16;9(6):517-521. doi: 10.1021/acsmedchemlett.8b00126. eCollection 2018 Jun 14.
4
High-throughput platform assay technology for the discovery of pre-microrna-selective small molecule probes.
Bioconjug Chem. 2015 Jan 21;26(1):19-23. doi: 10.1021/bc500544v. Epub 2014 Dec 17.
5
A click chemistry assay to identify natural product ligands for pre-microRNAs.
Methods Enzymol. 2019;623:85-99. doi: 10.1016/bs.mie.2019.04.020. Epub 2019 May 11.
6
The mammalian two-hybrid system as a powerful tool for high-throughput drug screening.
Drug Discov Today. 2020 Apr;25(4):764-771. doi: 10.1016/j.drudis.2020.01.022. Epub 2020 Feb 4.
7
A click chemistry-based microRNA maturation assay optimized for high-throughput screening.
Chem Commun (Camb). 2016 Jul 7;52(53):8267-70. doi: 10.1039/c6cc02894b. Epub 2016 Jun 10.
8
High-throughput screen for inhibitors of protein-protein interactions in a reconstituted heat shock protein 70 (Hsp70) complex.
J Biol Chem. 2018 Mar 16;293(11):4014-4025. doi: 10.1074/jbc.RA117.001575. Epub 2018 Feb 2.
9
A cell-penetrant lactam-stapled peptide for targeting eIF4E protein-protein interactions.
Eur J Med Chem. 2020 Nov 1;205:112655. doi: 10.1016/j.ejmech.2020.112655. Epub 2020 Jul 25.
10
Discovery of Surfactins as Inhibitors of MicroRNA Processing Using Cat-ELCCA.
ACS Med Chem Lett. 2021 Apr 2;12(6):878-886. doi: 10.1021/acsmedchemlett.1c00046. eCollection 2021 Jun 10.

引用本文的文献

1
Chemical Probes for Studying the Eukaryotic Translation Initiation Factor 4E (eIF4E)-Regulated Translatome in Cancer.
ACS Pharmacol Transl Sci. 2025 Feb 17;8(3):621-635. doi: 10.1021/acsptsci.4c00674. eCollection 2025 Mar 14.
2
An ECD and NMR/DP4+ Computational Pipeline for Structure Revision and Elucidation of Diphenazine-Based Natural Products.
J Nat Prod. 2023 Jul 28;86(7):1801-1814. doi: 10.1021/acs.jnatprod.3c00306. Epub 2023 Jul 18.
3
Discovery of Surfactins as Inhibitors of MicroRNA Processing Using Cat-ELCCA.
ACS Med Chem Lett. 2021 Apr 2;12(6):878-886. doi: 10.1021/acsmedchemlett.1c00046. eCollection 2021 Jun 10.
4
A cell-penetrant lactam-stapled peptide for targeting eIF4E protein-protein interactions.
Eur J Med Chem. 2020 Nov 1;205:112655. doi: 10.1016/j.ejmech.2020.112655. Epub 2020 Jul 25.
5
RNA-Targeted Therapies and High-Throughput Screening Methods.
Int J Mol Sci. 2020 Apr 23;21(8):2996. doi: 10.3390/ijms21082996.
7
A click chemistry assay to identify natural product ligands for pre-microRNAs.
Methods Enzymol. 2019;623:85-99. doi: 10.1016/bs.mie.2019.04.020. Epub 2019 May 11.
9
Chemoproteomic Profiling Uncovers CDK4-Mediated Phosphorylation of the Translational Suppressor 4E-BP1.
Cell Chem Biol. 2019 Jul 18;26(7):980-990.e8. doi: 10.1016/j.chembiol.2019.03.012. Epub 2019 May 2.

本文引用的文献

1
From basic apoptosis discoveries to advanced selective BCL-2 family inhibitors.
Nat Rev Drug Discov. 2017 Apr;16(4):273-284. doi: 10.1038/nrd.2016.253. Epub 2017 Feb 17.
2
The Structures of eIF4E-eIF4G Complexes Reveal an Extended Interface to Regulate Translation Initiation.
Mol Cell. 2016 Nov 3;64(3):467-479. doi: 10.1016/j.molcel.2016.09.020. Epub 2016 Oct 20.
3
Twenty years on: the impact of fragments on drug discovery.
Nat Rev Drug Discov. 2016 Sep;15(9):605-619. doi: 10.1038/nrd.2016.109. Epub 2016 Jul 15.
4
A click chemistry-based microRNA maturation assay optimized for high-throughput screening.
Chem Commun (Camb). 2016 Jul 7;52(53):8267-70. doi: 10.1039/c6cc02894b. Epub 2016 Jun 10.
5
Small molecules, big targets: drug discovery faces the protein-protein interaction challenge.
Nat Rev Drug Discov. 2016 Aug;15(8):533-50. doi: 10.1038/nrd.2016.29. Epub 2016 Apr 11.
6
Pioneering apoptosis-targeted cancer drug poised for FDA approval.
Nat Rev Drug Discov. 2016 Mar;15(3):147-9. doi: 10.1038/nrd.2016.23.
7
Current Experimental Methods for Characterizing Protein-Protein Interactions.
ChemMedChem. 2016 Apr 19;11(8):738-56. doi: 10.1002/cmdc.201500495. Epub 2016 Feb 11.
8
Molecular mechanism of the dual activity of 4EGI-1: Dissociating eIF4G from eIF4E but stabilizing the binding of unphosphorylated 4E-BP1.
Proc Natl Acad Sci U S A. 2015 Jul 28;112(30):E4036-45. doi: 10.1073/pnas.1512118112. Epub 2015 Jul 13.
9
Targeting the translation machinery in cancer.
Nat Rev Drug Discov. 2015 Apr;14(4):261-78. doi: 10.1038/nrd4505. Epub 2015 Mar 6.
10
Molecular architecture of 4E-BP translational inhibitors bound to eIF4E.
Mol Cell. 2015 Mar 19;57(6):1074-1087. doi: 10.1016/j.molcel.2015.01.017. Epub 2015 Feb 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验