Suppr超能文献

考虑结合动力学在设计无序蛋白真核翻译起始因子 4E 结合蛋白 1 和真核翻译起始因子 4G 的肽模拟物中的应用。

Consideration of Binding Kinetics in the Design of Stapled Peptide Mimics of the Disordered Proteins Eukaryotic Translation Initiation Factor 4E-Binding Protein 1 and Eukaryotic Translation Initiation Factor 4G.

机构信息

Department of Medicinal Chemistry, College of Pharmacy , University of Michigan , 1600 Huron Parkway, NCRC B520 , Ann Arbor , Michigan 48109 , United States.

Program in Chemical Biology , University of Michigan , 210 Washtenaw Avenue , Ann Arbor , Michigan 48109 , United States.

出版信息

J Med Chem. 2019 May 23;62(10):4967-4978. doi: 10.1021/acs.jmedchem.9b00068. Epub 2019 May 9.

Abstract

Protein disorder plays a crucial role in signal transduction and is key for many cellular processes including transcription, translation, and cell cycle. Within the intrinsically disordered protein interactome, the α-helix is commonly used for binding, which is induced via a disorder-to-order transition. Because the targeting of protein-protein interactions (PPIs) remains an important challenge in medicinal chemistry, efforts have been made to mimic this secondary structure for rational inhibitor design through the use of stapled peptides. Cap-dependent mRNA translation is regulated by two disordered proteins, 4E-BP1 and eIF4G, that inhibit or stimulate the activity of the mG cap-binding translation initiation factor, eIF4E, respectively. Both use an α-helical motif for eIF4E binding, warranting the investigation of stapled peptide mimics for manipulating eIF4E PPIs. Herein, we describe our efforts toward this goal, resulting in the synthesis of a cell-active stapled peptide for further development in manipulating aberrant cap-dependent translation in human diseases.

摘要

蛋白质的无序结构在信号转导中起着至关重要的作用,是许多细胞过程(包括转录、翻译和细胞周期)的关键。在固有无序蛋白质互作组中,α-螺旋常用于结合,这是通过无序到有序的转变来诱导的。由于蛋白质-蛋白质相互作用(PPIs)的靶向仍然是药物化学中的一个重要挑战,因此人们努力通过使用订书肽来模拟这种二级结构,以进行合理的抑制剂设计。帽依赖性 mRNA 翻译受两种无序蛋白 4E-BP1 和 eIF4G 的调节,它们分别抑制或刺激 mG 帽结合翻译起始因子 eIF4E 的活性。两者都使用α-螺旋基序来结合 eIF4E,因此有必要研究订书肽模拟物来操纵 eIF4E 的 PPI。本文描述了我们为此所做的努力,合成了一种具有细胞活性的订书肽,以进一步开发用于操纵人类疾病中异常的帽依赖性翻译的方法。

相似文献

2
Molecular mechanism of the dual activity of 4EGI-1: Dissociating eIF4G from eIF4E but stabilizing the binding of unphosphorylated 4E-BP1.
Proc Natl Acad Sci U S A. 2015 Jul 28;112(30):E4036-45. doi: 10.1073/pnas.1512118112. Epub 2015 Jul 13.
3
The Structures of eIF4E-eIF4G Complexes Reveal an Extended Interface to Regulate Translation Initiation.
Mol Cell. 2016 Nov 3;64(3):467-479. doi: 10.1016/j.molcel.2016.09.020. Epub 2016 Oct 20.
6
Inhibition of ovarian cancer growth by a tumor-targeting peptide that binds eukaryotic translation initiation factor 4E.
Clin Cancer Res. 2009 Jul 1;15(13):4336-47. doi: 10.1158/1078-0432.CCR-08-2924. Epub 2009 May 19.
8
Identification and function of the second eIF4E-binding region in N-terminal domain of eIF4G: comparison with eIF4E-binding protein.
Biochem Biophys Res Commun. 2011 Oct 28;414(3):462-7. doi: 10.1016/j.bbrc.2011.09.084. Epub 2011 Sep 21.
9
A cell-penetrant lactam-stapled peptide for targeting eIF4E protein-protein interactions.
Eur J Med Chem. 2020 Nov 1;205:112655. doi: 10.1016/j.ejmech.2020.112655. Epub 2020 Jul 25.
10
The dynamic mechanism of 4E-BP1 recognition and phosphorylation by mTORC1.
Mol Cell. 2021 Jun 3;81(11):2403-2416.e5. doi: 10.1016/j.molcel.2021.03.031. Epub 2021 Apr 13.

引用本文的文献

1
CRISPR RiPCA for Investigating eIF4E-mGpppX Capped mRNA Interactions.
bioRxiv. 2025 Jun 22:2025.06.19.660603. doi: 10.1101/2025.06.19.660603.
2
Chemical Probes for Studying the Eukaryotic Translation Initiation Factor 4E (eIF4E)-Regulated Translatome in Cancer.
ACS Pharmacol Transl Sci. 2025 Feb 17;8(3):621-635. doi: 10.1021/acsptsci.4c00674. eCollection 2025 Mar 14.
3
Peptide design to control protein-protein interactions.
Chem Soc Rev. 2025 Feb 17;54(4):1684-1698. doi: 10.1039/d4cs00243a.
5
An ECD and NMR/DP4+ Computational Pipeline for Structure Revision and Elucidation of Diphenazine-Based Natural Products.
J Nat Prod. 2023 Jul 28;86(7):1801-1814. doi: 10.1021/acs.jnatprod.3c00306. Epub 2023 Jul 18.
7
Ribosome biogenesis in disease: new players and therapeutic targets.
Signal Transduct Target Ther. 2023 Jan 9;8(1):15. doi: 10.1038/s41392-022-01285-4.
8
Structural optimization of reversible dibromomaleimide peptide stapling.
Pept Sci (Hoboken). 2021 Jan;113(1):e24157. doi: 10.1002/pep2.24157. Epub 2020 Mar 20.
9
Targeting intracellular protein-protein interactions with macrocyclic peptides.
Trends Pharmacol Sci. 2022 Mar;43(3):234-248. doi: 10.1016/j.tips.2021.11.008. Epub 2021 Dec 13.

本文引用的文献

2
Synthesis of 7-benzylguanosine cap-analogue conjugates for eIF4E targeted degradation.
Eur J Med Chem. 2019 Mar 15;166:339-350. doi: 10.1016/j.ejmech.2019.01.080. Epub 2019 Jan 31.
3
A Conditionally Fluorescent Peptide Reporter of Secondary Structure Modulation.
Chembiochem. 2019 Jan 2;20(1):40-45. doi: 10.1002/cbic.201800377. Epub 2018 Oct 17.
4
High-Throughput Chemical Probing of Full-Length Protein-Protein Interactions.
ACS Comb Sci. 2017 Dec 11;19(12):763-769. doi: 10.1021/acscombsci.7b00128. Epub 2017 Nov 14.
5
Hydrocarbon constrained peptides - understanding preorganisation and binding affinity.
Chem Sci. 2016 Jun 1;7(6):3694-3702. doi: 10.1039/c5sc04048e. Epub 2016 Feb 29.
6
Stapled peptide inhibitors of RAB25 target context-specific phenotypes in cancer.
Nat Commun. 2017 Sep 22;8(1):660. doi: 10.1038/s41467-017-00888-8.
8
The Structures of eIF4E-eIF4G Complexes Reveal an Extended Interface to Regulate Translation Initiation.
Mol Cell. 2016 Nov 3;64(3):467-479. doi: 10.1016/j.molcel.2016.09.020. Epub 2016 Oct 20.
9
Biophysical determinants for cellular uptake of hydrocarbon-stapled peptide helices.
Nat Chem Biol. 2016 Oct;12(10):845-52. doi: 10.1038/nchembio.2153. Epub 2016 Aug 22.
10
Dynamic Protein Interaction Networks and New Structural Paradigms in Signaling.
Chem Rev. 2016 Jun 8;116(11):6424-62. doi: 10.1021/acs.chemrev.5b00548. Epub 2016 Feb 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验