Suppr超能文献

通过将含有α-红没药醇作为核心的壳聚糖包被纳米胶囊进行封装来逆转三氯生耐药性:伤口敷料的研发

Triclosan resistance reversion by encapsulation in chitosan-coated-nanocapsule containing α-bisabolol as core: development of wound dressing.

作者信息

De Marchi João Guilherme B, Jornada Denise S, Silva Fernanda K, Freitas Ana L, Fuentefria Alexandre M, Pohlmann Adriana R, Guterres Silvia S

机构信息

Pharmaceutical Sciences Graduate Program.

Department of Organic Chemistry, Institute of Chemistry, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil.

出版信息

Int J Nanomedicine. 2017 Oct 25;12:7855-7868. doi: 10.2147/IJN.S143324. eCollection 2017.

Abstract

The use of nanoparticles may be particularly advantageous in treating bacterial infections due to their multiple simultaneous mechanisms of action. Nanoencapsulation is particularly useful for lipophilic drugs. In this scenario, triclosan is considered a good candidate due to its lipophilicity, broad-spectrum activity, and safety. In the present study, we have developed and characterized an antimicrobial suspension of triclosan and α-bisabolol against pathogenic strains that are resistant () and susceptible (, , and ) to triclosan. We also aimed to determine the minimum inhibitory concentration, using serial microdilution adapted from a CLSI methodology (Clinical and Laboratory Standards Institute). Challenge test was used to confirm the antimicrobial effectiveness of the nanocapsule formulation, as well as after its incorporation into a commercial wound dressing (Veloderm). The zeta potential of before and after contact with cationic nanocapsules and the ratio between the number of nanocapsules per colony forming unit (CFU) were determined to evaluate a possible interaction between nanocapsules and bacteria. The results showed that nanoencapsulation has improved the antimicrobial activity when tested with two different methodologies. The number of nanocapsules per CFU was high even in great dilutions and the zeta potential was reverted after being in contact with the cationic nanocapsules. The nanocapsules were able to improve the activity of triclosan, even when tested within 28 days and when dried in the wound dressing.

摘要

由于纳米颗粒具有多种同时发挥作用的机制,其在治疗细菌感染方面可能具有特别的优势。纳米包封对于亲脂性药物尤其有用。在这种情况下,三氯生因其亲脂性、广谱活性和安全性而被认为是一个很好的候选药物。在本研究中,我们开发并表征了一种三氯生和α-红没药醇的抗菌悬浮液,用于对抗对三氯生耐药()和敏感(、和)的致病菌株。我们还旨在使用改编自CLSI方法(临床和实验室标准协会)的系列微量稀释法来确定最低抑菌浓度。采用挑战试验来确认纳米胶囊制剂以及将其掺入商用伤口敷料(Veloderm)后的抗菌效果。测定了与阳离子纳米胶囊接触前后的ζ电位以及每菌落形成单位(CFU)的纳米胶囊数量之比,以评估纳米胶囊与细菌之间可能的相互作用。结果表明,当用两种不同方法进行测试时,纳米包封提高了抗菌活性。即使在高度稀释的情况下,每CFU的纳米胶囊数量也很高,并且在与阳离子纳米胶囊接触后ζ电位发生了反转。即使在28天内进行测试以及在伤口敷料中干燥后,纳米胶囊仍能够提高三氯生的活性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/786c/5661849/5eb797900a18/ijn-12-7855Fig1.jpg

相似文献

2
The antimicrobial spectrum of Xeroform.
Burns. 2017 Sep;43(6):1189-1194. doi: 10.1016/j.burns.2016.10.023. Epub 2017 Jun 19.
4
Development of a hydrogel containing bisabolol-loaded nanocapsules for the treatment of atopic dermatitis in a Balb/c mice model.
Int J Pharm. 2024 May 10;656:124029. doi: 10.1016/j.ijpharm.2024.124029. Epub 2024 Mar 26.
5
Triclosan-tolerant bacteria: changes in susceptibility to antibiotics.
J Hosp Infect. 2009 May;72(1):71-6. doi: 10.1016/j.jhin.2009.01.014. Epub 2009 Feb 25.
6
Evaluation of the antibacterial and modulatory potential of α-bisabolol, β-cyclodextrin and α-bisabolol/β-cyclodextrin complex.
Biomed Pharmacother. 2017 Aug;92:1111-1118. doi: 10.1016/j.biopha.2017.06.020. Epub 2017 Jun 12.
7
Comparison of the Antimicrobial Properties of Silver Impregnated Vascular Grafts with and without Triclosan.
Eur J Vasc Endovasc Surg. 2016 Feb;51(2):285-92. doi: 10.1016/j.ejvs.2015.10.016. Epub 2015 Dec 9.
10
High-level triclosan resistance in Pseudomonas aeruginosa is solely a result of efflux.
Am J Infect Control. 2003 Apr;31(2):124-7. doi: 10.1067/mic.2003.11.

引用本文的文献

1
Alpha-bisabolol inhibits yeast to hyphal form transition and biofilm development in : in vitro and in silico studies.
In Silico Pharmacol. 2025 Apr 1;13(1):53. doi: 10.1007/s40203-025-00335-3. eCollection 2025.
2
How Nanoparticles Help in Combating Chronic Wound Biofilms Infection?
Int J Nanomedicine. 2024 Nov 15;19:11883-11921. doi: 10.2147/IJN.S484473. eCollection 2024.
3
Use of nanoparticles, a modern means of drug delivery, against cryptosporidiosis.
J Adv Vet Anim Res. 2023 Dec 31;10(4):704-719. doi: 10.5455/javar.2023.j726. eCollection 2023 Dec.
4
Facile Fabrication of α-Bisabolol Nanoparticles with Improved Antioxidant and Antibacterial Effects.
Antioxidants (Basel). 2023 Jan 16;12(1):207. doi: 10.3390/antiox12010207.
5
Topical Antiseptic Formulations for Skin and Soft Tissue Infections.
Pharmaceutics. 2021 Apr 15;13(4):558. doi: 10.3390/pharmaceutics13040558.
6
Unravelling Toxoplasma treatment: conventional drugs toward nanomedicine.
World J Microbiol Biotechnol. 2021 Feb 10;37(3):48. doi: 10.1007/s11274-021-03000-x.
7
[Clinical application of nose ring drain in severe diabetic foot infection].
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2020 Aug 15;34(8):990-993. doi: 10.7507/1002-1892.202003190.
8
[Application of skin stretching device in repair of diabetic foot wound].
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2018 May 15;32(5):591-595. doi: 10.7507/1002-1892.201801104.
9
Anti- activity of various molecular weights and concentrations of chitosan nanoparticles on tachyzoites of RH strain.
Int J Nanomedicine. 2018 Mar 8;13:1341-1351. doi: 10.2147/IJN.S158736. eCollection 2018.

本文引用的文献

2
Chitosan-PVP-nano silver oxide wound dressing: in vitro and in vivo evaluation.
Int J Biol Macromol. 2015 Feb;73:49-57. doi: 10.1016/j.ijbiomac.2014.10.055. Epub 2014 Nov 12.
3
Nanomedicines for antimicrobial interventions.
J Hosp Infect. 2014 Dec;88(4):183-90. doi: 10.1016/j.jhin.2014.09.009. Epub 2014 Oct 2.
4
Nanomedicine in the Management of Microbial Infection - Overview and Perspectives.
Nano Today. 2014 Aug 1;9(4):478-498. doi: 10.1016/j.nantod.2014.06.003.
6
Antimicrobial wound dressing and anti-inflammatory efficacy of silver nanoparticles.
Int J Biol Macromol. 2014 Apr;65:509-15. doi: 10.1016/j.ijbiomac.2014.01.071. Epub 2014 Feb 11.
7
Antimicrobial protein rBPI21-induced surface changes on Gram-negative and Gram-positive bacteria.
Nanomedicine. 2014 Apr;10(3):543-51. doi: 10.1016/j.nano.2013.11.002. Epub 2013 Nov 18.
8
Nanocapsules: the weapons for novel drug delivery systems.
Bioimpacts. 2012;2(2):71-81. doi: 10.5681/bi.2012.011. Epub 2012 Apr 5.
9
Antimicrobial applications of nanotechnology: methods and literature.
Int J Nanomedicine. 2012;7:2767-81. doi: 10.2147/IJN.S24805. Epub 2012 Jun 6.
10
Vitamin K1-loaded lipid-core nanocapsules: physicochemical characterization and in vitro skin permeation.
Skin Res Technol. 2013 Feb;19(1):e223-30. doi: 10.1111/j.1600-0846.2012.00631.x. Epub 2012 Jun 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验