Suppr超能文献

一种新抗原适应性模型可预测肿瘤对检查点阻断免疫疗法的反应。

A neoantigen fitness model predicts tumour response to checkpoint blockade immunotherapy.

作者信息

Łuksza Marta, Riaz Nadeem, Makarov Vladimir, Balachandran Vinod P, Hellmann Matthew D, Solovyov Alexander, Rizvi Naiyer A, Merghoub Taha, Levine Arnold J, Chan Timothy A, Wolchok Jedd D, Greenbaum Benjamin D

机构信息

The Simons Center for Systems Biology, Institute for Advanced Study, Princeton, New Jersey, USA.

Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA.

出版信息

Nature. 2017 Nov 23;551(7681):517-520. doi: 10.1038/nature24473. Epub 2017 Nov 8.

Abstract

Checkpoint blockade immunotherapies enable the host immune system to recognize and destroy tumour cells. Their clinical activity has been correlated with activated T-cell recognition of neoantigens, which are tumour-specific, mutated peptides presented on the surface of cancer cells. Here we present a fitness model for tumours based on immune interactions of neoantigens that predicts response to immunotherapy. Two main factors determine neoantigen fitness: the likelihood of neoantigen presentation by the major histocompatibility complex (MHC) and subsequent recognition by T cells. We estimate these components using the relative MHC binding affinity of each neoantigen to its wild type and a nonlinear dependence on sequence similarity of neoantigens to known antigens. To describe the evolution of a heterogeneous tumour, we evaluate its fitness as a weighted effect of dominant neoantigens in the subclones of the tumour. Our model predicts survival in anti-CTLA-4-treated patients with melanoma and anti-PD-1-treated patients with lung cancer. Importantly, low-fitness neoantigens identified by our method may be leveraged for developing novel immunotherapies. By using an immune fitness model to study immunotherapy, we reveal broad similarities between the evolution of tumours and rapidly evolving pathogens.

摘要

免疫检查点阻断疗法能使宿主免疫系统识别并摧毁肿瘤细胞。它们的临床活性与新抗原的活化T细胞识别相关,新抗原是癌细胞表面呈现的肿瘤特异性突变肽段。在此,我们基于新抗原的免疫相互作用提出了一种肿瘤适应性模型,该模型可预测对免疫疗法的反应。两个主要因素决定新抗原的适应性:主要组织相容性复合体(MHC)呈递新抗原以及随后被T细胞识别的可能性。我们利用每个新抗原与其野生型的相对MHC结合亲和力以及新抗原与已知抗原序列相似性的非线性依赖性来估计这些成分。为描述异质性肿瘤的演变,我们将其适应性评估为肿瘤亚克隆中优势新抗原的加权效应。我们的模型预测了接受抗CTLA - 4治疗的黑色素瘤患者和接受抗PD - 1治疗的肺癌患者的生存期。重要的是,通过我们的方法鉴定出的低适应性新抗原可用于开发新型免疫疗法。通过使用免疫适应性模型研究免疫疗法,我们揭示了肿瘤演变与快速演变的病原体之间的广泛相似性。

相似文献

1
A neoantigen fitness model predicts tumour response to checkpoint blockade immunotherapy.
Nature. 2017 Nov 23;551(7681):517-520. doi: 10.1038/nature24473. Epub 2017 Nov 8.
2
Evolution of Neoantigen Landscape during Immune Checkpoint Blockade in Non-Small Cell Lung Cancer.
Cancer Discov. 2017 Mar;7(3):264-276. doi: 10.1158/2159-8290.CD-16-0828. Epub 2016 Dec 28.
3
Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade.
Science. 2016 Mar 25;351(6280):1463-9. doi: 10.1126/science.aaf1490. Epub 2016 Mar 3.
4
Recent Advances in Targeting CD8 T-Cell Immunity for More Effective Cancer Immunotherapy.
Front Immunol. 2018 Jan 22;9:14. doi: 10.3389/fimmu.2018.00014. eCollection 2018.
5
pTuneos: prioritizing tumor neoantigens from next-generation sequencing data.
Genome Med. 2019 Oct 30;11(1):67. doi: 10.1186/s13073-019-0679-x.
7
Recent Advances in Lung Cancer Immunotherapy: Input of T-Cell Epitopes Associated With Impaired Peptide Processing.
Front Immunol. 2019 Jul 3;10:1505. doi: 10.3389/fimmu.2019.01505. eCollection 2019.
8
PD-1 checkpoint blockade alone or combined PD-1 and CTLA-4 blockade as immunotherapy for lung cancer?
Expert Opin Biol Ther. 2017 Mar;17(3):305-312. doi: 10.1080/14712598.2017.1280454. Epub 2017 Jan 18.
9
The role of neoantigens in response to immune checkpoint blockade.
Int Immunol. 2016 Aug;28(8):411-9. doi: 10.1093/intimm/dxw019. Epub 2016 Apr 5.
10
An immunogenic personal neoantigen vaccine for patients with melanoma.
Nature. 2017 Jul 13;547(7662):217-221. doi: 10.1038/nature22991. Epub 2017 Jul 5.

引用本文的文献

1
Engineering strategies of sequential drug delivery systems for combination tumor immunotherapy.
Acta Pharm Sin B. 2025 Aug;15(8):3951-3977. doi: 10.1016/j.apsb.2025.05.039. Epub 2025 Jun 6.
2
Accelerating Neoantigen Discovery: A High-Throughput Approach to Immunogenic Target Identification.
Vaccines (Basel). 2025 Aug 15;13(8):865. doi: 10.3390/vaccines13080865.
3
Immunotherapy resistance in non-small cell lung cancer: from mechanisms to therapeutic opportunities.
J Exp Clin Cancer Res. 2025 Aug 23;44(1):250. doi: 10.1186/s13046-025-03519-z.
6
Neoantigen load as a predictor of relapse in early-stage NSCLC: features that agonise and antagonise prognosis.
Cancer Immunol Immunother. 2025 Aug 6;74(9):285. doi: 10.1007/s00262-025-04131-y.
7
T cell epitope mapping reveals immunodominance of evolutionarily conserved regions within SARS-CoV-2 proteome.
iScience. 2025 Jul 2;28(8):113044. doi: 10.1016/j.isci.2025.113044. eCollection 2025 Aug 15.
8
Eliciting antitumor immunity via therapeutic cancer vaccines.
Cell Mol Immunol. 2025 Jul 9. doi: 10.1038/s41423-025-01316-4.
9
Advances and challenges in neoantigen prediction for cancer immunotherapy.
Front Immunol. 2025 Jun 12;16:1617654. doi: 10.3389/fimmu.2025.1617654. eCollection 2025.
10
A Comprehensive Analysis of the Role of DSN1 in Pan-Cancer Prognosis and Immunotherapy.
J Cancer. 2025 Apr 21;16(8):2449-2465. doi: 10.7150/jca.111585. eCollection 2025.

本文引用的文献

1
IFN-γ-related mRNA profile predicts clinical response to PD-1 blockade.
J Clin Invest. 2017 Aug 1;127(8):2930-2940. doi: 10.1172/JCI91190. Epub 2017 Jun 26.
2
Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade.
Science. 2017 Jul 28;357(6349):409-413. doi: 10.1126/science.aan6733. Epub 2017 Jun 8.
4
Evolution of Neoantigen Landscape during Immune Checkpoint Blockade in Non-Small Cell Lung Cancer.
Cancer Discov. 2017 Mar;7(3):264-276. doi: 10.1158/2159-8290.CD-16-0828. Epub 2016 Dec 28.
5
Overcoming resistance to checkpoint blockade therapy by targeting PI3Kγ in myeloid cells.
Nature. 2016 Nov 17;539(7629):443-447. doi: 10.1038/nature20554. Epub 2016 Nov 9.
6
Fulminant Myocarditis with Combination Immune Checkpoint Blockade.
N Engl J Med. 2016 Nov 3;375(18):1749-1755. doi: 10.1056/NEJMoa1609214.
7
Fundamental amino acid mass distributions and entropy costs in proteomes.
J Theor Biol. 2016 Dec 7;410:119-124. doi: 10.1016/j.jtbi.2016.08.011. Epub 2016 Aug 18.
8
Host-Pathogen Coevolution and the Emergence of Broadly Neutralizing Antibodies in Chronic Infections.
PLoS Genet. 2016 Jul 21;12(7):e1006171. doi: 10.1371/journal.pgen.1006171. eCollection 2016 Jul.
9
Targeting of cancer neoantigens with donor-derived T cell receptor repertoires.
Science. 2016 Jun 10;352(6291):1337-41. doi: 10.1126/science.aaf2288. Epub 2016 May 19.
10
Cutaneous, gastrointestinal, hepatic, endocrine, and renal side-effects of anti-PD-1 therapy.
Eur J Cancer. 2016 Jun;60:190-209. doi: 10.1016/j.ejca.2016.02.025. Epub 2016 Apr 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验