Suppr超能文献

新型小分子结合位点特异性抑制疟原虫双功能法呢基/香叶基二磷酸合酶。

Specific Inhibition of the Bifunctional Farnesyl/Geranylgeranyl Diphosphate Synthase in Malaria Parasites via a New Small-Molecule Binding Site.

机构信息

Department of Biochemistry, Stanford Medical School, Stanford University, Stanford, CA 94305, USA.

Department of Biochemistry & Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA; Huck Center for Malaria Research, Pennsylvania State University, University Park, PA 16802, USA.

出版信息

Cell Chem Biol. 2018 Feb 15;25(2):185-193.e5. doi: 10.1016/j.chembiol.2017.11.010. Epub 2017 Dec 21.

Abstract

The bifunctional farnesyl/geranylgeranyl diphosphate synthase (FPPS/GGPPS) is a key branchpoint enzyme in isoprenoid biosynthesis in Plasmodium falciparum (malaria) parasites. PfFPPS/GGPPS is a validated, high-priority antimalarial drug target. Unfortunately, current bisphosphonate drugs that inhibit FPPS and GGPPS enzymes by acting as a diphosphate substrate analog show poor bioavailability and selectivity for PfFPPS/GGPPS. We identified a new non-bisphosphonate compound, MMV019313, which is highly selective for PfFPPS/GGPPS and showed no activity against human FPPS or GGPPS. Inhibition of PfFPPS/GGPPS by MMV019313, but not bisphosphonates, was disrupted in an S228T variant, demonstrating that MMV019313 and bisphosphonates have distinct modes of inhibition. Molecular docking indicated that MMV019313 did not bind previously characterized substrate sites in PfFPPS/GGPPS. Our finding uncovers a new, selective small-molecule binding site in this important antimalarial drug target with superior druggability compared with the known inhibitor site and sets the stage for the development of Plasmodium-specific FPPS/GGPPS inhibitors.

摘要

双功能法呢基/香叶基二磷酸合酶(FPPS/GGPPS)是疟原虫(疟疾)寄生虫类异戊烯生物合成中的一个关键分支点酶。PfFPPS/GGPPS 是一个经过验证的、高优先级的抗疟药物靶点。不幸的是,目前通过作为二磷酸底物类似物来抑制 FPPS 和 GGPPS 酶的双膦酸盐药物显示出较差的生物利用度和对 PfFPPS/GGPPS 的选择性。我们发现了一种新的非双膦酸盐化合物 MMV019313,它对 PfFPPS/GGPPS 具有高度选择性,对人 FPPS 或 GGPPS 没有活性。PfFPPS/GGPPS 的抑制作用由 MMV019313 而不是双膦酸盐引起,这在 S228T 变体中被破坏,表明 MMV019313 和双膦酸盐具有不同的抑制模式。分子对接表明,MMV019313 不与 PfFPPS/GGPPS 中以前表征的底物结合位点结合。我们的发现揭示了这个重要的抗疟药物靶点中的一个新的、选择性的小分子结合位点,与已知的抑制剂结合位点相比,其成药性更优,为开发针对疟原虫的 FPPS/GGPPS 抑制剂奠定了基础。

相似文献

1
Specific Inhibition of the Bifunctional Farnesyl/Geranylgeranyl Diphosphate Synthase in Malaria Parasites via a New Small-Molecule Binding Site.
Cell Chem Biol. 2018 Feb 15;25(2):185-193.e5. doi: 10.1016/j.chembiol.2017.11.010. Epub 2017 Dec 21.
2
Nonbisphosphonate inhibitors of Plasmodium falciparum FPPS/GGPPS.
Bioorg Med Chem Lett. 2021 Jun 1;41:127978. doi: 10.1016/j.bmcl.2021.127978. Epub 2021 Mar 22.
10
Moiety-linkage map reveals selective nonbisphosphonate inhibitors of human geranylgeranyl diphosphate synthase.
J Chem Inf Model. 2013 Sep 23;53(9):2299-311. doi: 10.1021/ci400227r. Epub 2013 Aug 26.

引用本文的文献

1
Promising efficacy of nitrogen-containing bisphosphonates against the infection of Cryptosporidium spp.
Int J Parasitol Drugs Drug Resist. 2025 Aug 6;29:100607. doi: 10.1016/j.ijpddr.2025.100607.
2
The essential genome of reveals determinants of antimalarial susceptibility.
Science. 2025 Feb 7;387(6734):eadq6241. doi: 10.1126/science.adq6241.
4
Systematic in vitro evolution in reveals key determinants of drug resistance.
Science. 2024 Nov 29;386(6725):eadk9893. doi: 10.1126/science.adk9893.
5
A fast-acting inhibitor of blood-stage with mechanism distinct from artemisinin and chloroquine.
bioRxiv. 2024 Aug 12:2024.08.12.607553. doi: 10.1101/2024.08.12.607553.
6
A picomolar inhibitor of the IPP pathway.
Antimicrob Agents Chemother. 2024 Aug 7;68(8):e0123823. doi: 10.1128/aac.01238-23. Epub 2024 Jul 22.
7
Antimalarial Drug Discovery from Natural and Synthetic Sources.
Curr Med Chem. 2025;32(1):87-110. doi: 10.2174/0109298673312727240527064833.
8
Antimalarial drug discovery: progress and approaches.
Nat Rev Drug Discov. 2023 Oct;22(10):807-826. doi: 10.1038/s41573-023-00772-9. Epub 2023 Aug 31.
9
Expanding the scope of novel 1,2,3-triazole derivatives as new antiparasitic drug candidates.
RSC Med Chem. 2022 Oct 31;14(1):122-134. doi: 10.1039/d2md00324d. eCollection 2023 Jan 25.
10
Current and emerging target identification methods for novel antimalarials.
Int J Parasitol Drugs Drug Resist. 2022 Dec;20:135-144. doi: 10.1016/j.ijpddr.2022.11.001. Epub 2022 Nov 11.

本文引用的文献

2
Human farnesyl pyrophosphate synthase is allosterically inhibited by its own product.
Nat Commun. 2017 Jan 18;8:14132. doi: 10.1038/ncomms14132.
3
The Prenylated Proteome of Reveals Pathogen-specific Prenylation Activity and Drug Mechanism-of-action.
Mol Cell Proteomics. 2017 Apr;16(4 suppl 1):S54-S64. doi: 10.1074/mcp.M116.064550. Epub 2016 Dec 31.
6
Metabolomics-Based Screening of the Malaria Box Reveals both Novel and Established Mechanisms of Action.
Antimicrob Agents Chemother. 2016 Oct 21;60(11):6650-6663. doi: 10.1128/AAC.01226-16. Print 2016 Nov.
7
Metabolomic Profiling of the Malaria Box Reveals Antimalarial Target Pathways.
Antimicrob Agents Chemother. 2016 Oct 21;60(11):6635-6649. doi: 10.1128/AAC.01224-16. Print 2016 Nov.
8
Open Source Drug Discovery with the Malaria Box Compound Collection for Neglected Diseases and Beyond.
PLoS Pathog. 2016 Jul 28;12(7):e1005763. doi: 10.1371/journal.ppat.1005763. eCollection 2016 Jul.
9
Extensive Shared Chemosensitivity between Malaria and Babesiosis Blood-Stage Parasites.
Antimicrob Agents Chemother. 2016 Jul 22;60(8):5059-63. doi: 10.1128/AAC.00928-16. Print 2016 Aug.
10
Discovery of Novel Allosteric Non-Bisphosphonate Inhibitors of Farnesyl Pyrophosphate Synthase by Integrated Lead Finding.
ChemMedChem. 2015 Nov;10(11):1884-91. doi: 10.1002/cmdc.201500338. Epub 2015 Sep 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验