Suppr超能文献

潜在变化得分模型中的误指定:对参数估计、模型评估和预测变化的影响。

Misspecification in Latent Change Score Models: Consequences for Parameter Estimation, Model Evaluation, and Predicting Change.

机构信息

a Michigan State University.

出版信息

Multivariate Behav Res. 2018 Mar-Apr;53(2):172-189. doi: 10.1080/00273171.2017.1409612. Epub 2018 Jan 4.

Abstract

Latent change score models (LCS) are conceptually powerful tools for analyzing longitudinal data (McArdle & Hamagami, 2001). However, applications of these models typically include constraints on key parameters over time. Although practically useful, strict invariance over time in these parameters is unlikely in real data. This study investigates the robustness of LCS when invariance over time is incorrectly imposed on key change-related parameters. Monte Carlo simulation methods were used to explore the impact of misspecification on parameter estimation, predicted trajectories of change, and model fit in the dual change score model, the foundational LCS. When constraints were incorrectly applied, several parameters, most notably the slope (i.e., constant change) factor mean and autoproportion coefficient, were severely and consistently biased, as were regression paths to the slope factor when external predictors of change were included. Standard fit indices indicated that the misspecified models fit well, partly because mean level trajectories over time were accurately captured. Loosening constraint improved the accuracy of parameter estimates, but estimates were more unstable, and models frequently failed to converge. Results suggest that potentially common sources of misspecification in LCS can produce distorted impressions of developmental processes, and that identifying and rectifying the situation is a challenge.

摘要

潜在变化分数模型(LCS)是分析纵向数据的概念性强大工具(McArdle 和 Hamagami,2001)。然而,这些模型的应用通常包括随时间对关键参数的限制。尽管在实践中很有用,但在实际数据中,这些参数随时间的严格不变性不太可能。本研究调查了当错误地对关键变化相关参数施加不变性时,LCS 的稳健性。蒙特卡罗模拟方法用于探索参数估计、变化预测轨迹和双变化分数模型(基础 LCS)中模型拟合的参数指定错误对模型的影响。当约束条件不正确时,几个参数,尤其是斜率(即,恒定变化)因素均值和自比例系数,严重且一致地存在偏差,当包括变化的外部预测因子时,斜率因子的回归路径也是如此。标准拟合指数表明,指定错误的模型拟合良好,部分原因是随时间推移的平均水平轨迹准确地被捕捉到。放宽约束条件可以提高参数估计的准确性,但估计值更不稳定,并且模型经常无法收敛。结果表明,LCS 中潜在的常见参数指定错误来源可能会对发展过程产生扭曲的印象,并且识别和纠正这种情况是一个挑战。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验