Suppr超能文献

共生微生物群与转移性黑色素瘤患者的抗PD-1疗效相关。

The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients.

作者信息

Matson Vyara, Fessler Jessica, Bao Riyue, Chongsuwat Tara, Zha Yuanyuan, Alegre Maria-Luisa, Luke Jason J, Gajewski Thomas F

机构信息

Department of Pathology, University of Chicago, Chicago, IL 60637, USA.

Center for Research Informatics, University of Chicago, IL 60637, USA.

出版信息

Science. 2018 Jan 5;359(6371):104-108. doi: 10.1126/science.aao3290.

Abstract

Anti-PD-1-based immunotherapy has had a major impact on cancer treatment but has only benefited a subset of patients. Among the variables that could contribute to interpatient heterogeneity is differential composition of the patients' microbiome, which has been shown to affect antitumor immunity and immunotherapy efficacy in preclinical mouse models. We analyzed baseline stool samples from metastatic melanoma patients before immunotherapy treatment, through an integration of 16 ribosomal RNA gene sequencing, metagenomic shotgun sequencing, and quantitative polymerase chain reaction for selected bacteria. A significant association was observed between commensal microbial composition and clinical response. Bacterial species more abundant in responders included , , and Reconstitution of germ-free mice with fecal material from responding patients could lead to improved tumor control, augmented T cell responses, and greater efficacy of anti-PD-L1 therapy. Our results suggest that the commensal microbiome may have a mechanistic impact on antitumor immunity in human cancer patients.

摘要

基于抗程序性死亡蛋白1(Anti-PD-1)的免疫疗法对癌症治疗产生了重大影响,但仅使一部分患者受益。患者微生物组的差异组成可能是导致患者间异质性的变量之一,在临床前小鼠模型中已证明其会影响抗肿瘤免疫和免疫疗法疗效。我们通过整合16核糖体RNA基因测序、宏基因组鸟枪法测序以及针对选定细菌的定量聚合酶链反应,分析了转移性黑色素瘤患者在免疫治疗前的基线粪便样本。共生微生物组成与临床反应之间存在显著关联。反应者中更丰富的细菌种类包括[具体细菌种类1]、[具体细菌种类2]和[具体细菌种类3]。用反应患者的粪便材料重建无菌小鼠可导致更好的肿瘤控制、增强的T细胞反应以及抗程序性死亡配体1(anti-PD-L1)疗法更高的疗效。我们的结果表明,共生微生物组可能对人类癌症患者的抗肿瘤免疫产生机制性影响。

相似文献

1
The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients.
Science. 2018 Jan 5;359(6371):104-108. doi: 10.1126/science.aao3290.
2
Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy.
Science. 2015 Nov 27;350(6264):1084-9. doi: 10.1126/science.aac4255. Epub 2015 Nov 5.
3
Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients.
Science. 2018 Jan 5;359(6371):97-103. doi: 10.1126/science.aan4236. Epub 2017 Nov 2.
4
Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors.
Science. 2018 Jan 5;359(6371):91-97. doi: 10.1126/science.aan3706. Epub 2017 Nov 2.
6
Gut microbiome and immunotherapy response.
Lancet Oncol. 2017 Dec;18(12):e717. doi: 10.1016/S1470-2045(17)30841-0. Epub 2017 Nov 9.
7
IMMUNOTHERAPY. Could microbial therapy boost cancer immunotherapy?
Science. 2015 Nov 27;350(6264):1031-2. doi: 10.1126/science.aad7706.

引用本文的文献

1
The multi-kingdom cancer microbiome.
Nat Microbiol. 2025 Sep 9. doi: 10.1038/s41564-025-02103-7.
2
Harnessing biomarkers to guide immunotherapy in esophageal cancer: toward precision oncology.
Clin Transl Oncol. 2025 Sep 6. doi: 10.1007/s12094-025-04051-4.
3
Engineering the Microbiome: a Novel Approach to Managing Autoimmune Diseases.
Neuromolecular Med. 2025 Sep 5;27(1):63. doi: 10.1007/s12017-025-08879-5.
4
Microbiome data integration via shared dictionary learning.
Nat Commun. 2025 Sep 1;16(1):8147. doi: 10.1038/s41467-025-63425-y.
10
Strategies to Overcome PD-1/PD-L1 Blockade Resistance: Focusing on Combination with Immune Checkpoint Blockades.
J Cancer. 2025 Jul 24;16(11):3425-3449. doi: 10.7150/jca.108163. eCollection 2025.

本文引用的文献

1
Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors.
Science. 2018 Jan 5;359(6371):91-97. doi: 10.1126/science.aan3706. Epub 2017 Nov 2.
2
IFN-γ-related mRNA profile predicts clinical response to PD-1 blockade.
J Clin Invest. 2017 Aug 1;127(8):2930-2940. doi: 10.1172/JCI91190. Epub 2017 Jun 26.
3
Mining the Human Gut Microbiota for Immunomodulatory Organisms.
Cell. 2017 Feb 23;168(5):928-943.e11. doi: 10.1016/j.cell.2017.01.022. Epub 2017 Feb 16.
4
Innate immune signaling and regulation in cancer immunotherapy.
Cell Res. 2017 Jan;27(1):96-108. doi: 10.1038/cr.2016.149. Epub 2016 Dec 16.
5
Enterococcus hirae and Barnesiella intestinihominis Facilitate Cyclophosphamide-Induced Therapeutic Immunomodulatory Effects.
Immunity. 2016 Oct 18;45(4):931-943. doi: 10.1016/j.immuni.2016.09.009. Epub 2016 Oct 4.
6
Loss of PTEN Promotes Resistance to T Cell-Mediated Immunotherapy.
Cancer Discov. 2016 Feb;6(2):202-16. doi: 10.1158/2159-8290.CD-15-0283. Epub 2015 Dec 8.
7
Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota.
Science. 2015 Nov 27;350(6264):1079-84. doi: 10.1126/science.aad1329. Epub 2015 Nov 5.
8
Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy.
Science. 2015 Nov 27;350(6264):1084-9. doi: 10.1126/science.aac4255. Epub 2015 Nov 5.
9
Melanoma-intrinsic β-catenin signalling prevents anti-tumour immunity.
Nature. 2015 Jul 9;523(7559):231-5. doi: 10.1038/nature14404. Epub 2015 May 11.
10
Pembrolizumab versus Ipilimumab in Advanced Melanoma.
N Engl J Med. 2015 Jun 25;372(26):2521-32. doi: 10.1056/NEJMoa1503093. Epub 2015 Apr 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验