Suppr超能文献

使用CIBERSORT分析肿瘤浸润免疫细胞

Profiling Tumor Infiltrating Immune Cells with CIBERSORT.

作者信息

Chen Binbin, Khodadoust Michael S, Liu Chih Long, Newman Aaron M, Alizadeh Ash A

机构信息

Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.

Division of Oncology, Department of Medicine, Stanford Cancer Institute, Stanford University, 875 Blake Wilbur Drive, Stanford, CA, 94305, USA.

出版信息

Methods Mol Biol. 2018;1711:243-259. doi: 10.1007/978-1-4939-7493-1_12.

Abstract

Tumor infiltrating leukocytes (TILs) are an integral component of the tumor microenvironment and have been found to correlate with prognosis and response to therapy. Methods to enumerate immune subsets such as immunohistochemistry or flow cytometry suffer from limitations in phenotypic markers and can be challenging to practically implement and standardize. An alternative approach is to acquire aggregative high dimensional data from cellular mixtures and to subsequently infer the cellular components computationally. We recently described CIBERSORT, a versatile computational method for quantifying cell fractions from bulk tissue gene expression profiles (GEPs). Combining support vector regression with prior knowledge of expression profiles from purified leukocyte subsets, CIBERSORT can accurately estimate the immune composition of a tumor biopsy. In this chapter, we provide a primer on the CIBERSORT method and illustrate its use for characterizing TILs in tumor samples profiled by microarray or RNA-Seq.

摘要

肿瘤浸润白细胞(TILs)是肿瘤微环境的一个重要组成部分,并且已发现其与预后及治疗反应相关。诸如免疫组织化学或流式细胞术等用于计数免疫亚群的方法在表型标记方面存在局限性,并且在实际应用和标准化方面可能具有挑战性。另一种方法是从细胞混合物中获取聚合的高维数据,然后通过计算推断细胞成分。我们最近描述了CIBERSORT,这是一种用于从批量组织基因表达谱(GEP)中定量细胞分数的通用计算方法。将支持向量回归与来自纯化白细胞亚群的表达谱的先验知识相结合,CIBERSORT可以准确估计肿瘤活检的免疫组成。在本章中,我们提供了CIBERSORT方法的入门介绍,并说明其用于表征通过微阵列或RNA测序分析的肿瘤样本中的TILs的用途。

相似文献

1
Profiling Tumor Infiltrating Immune Cells with CIBERSORT.
Methods Mol Biol. 2018;1711:243-259. doi: 10.1007/978-1-4939-7493-1_12.
2
Computational Deconvolution of Tumor-Infiltrating Immune Components with Bulk Tumor Gene Expression Data.
Methods Mol Biol. 2020;2120:249-262. doi: 10.1007/978-1-0716-0327-7_18.
3
High-throughput genomic profiling of tumor-infiltrating leukocytes.
Curr Opin Immunol. 2016 Aug;41:77-84. doi: 10.1016/j.coi.2016.06.006. Epub 2016 Jun 30.
4
Improved cell composition deconvolution method of bulk gene expression profiles to quantify subsets of immune cells.
BMC Med Genomics. 2019 Dec 20;12(Suppl 8):169. doi: 10.1186/s12920-019-0613-5.
5
Immune gene expression profiling reveals heterogeneity in luminal breast tumors.
Breast Cancer Res. 2019 Dec 19;21(1):147. doi: 10.1186/s13058-019-1218-9.
6
Gene expression markers of Tumor Infiltrating Leukocytes.
J Immunother Cancer. 2017 Feb 21;5:18. doi: 10.1186/s40425-017-0215-8. eCollection 2017.
7
Fast and robust deconvolution of tumor infiltrating lymphocyte from expression profiles using least trimmed squares.
PLoS Comput Biol. 2019 May 6;15(5):e1006976. doi: 10.1371/journal.pcbi.1006976. eCollection 2019 May.
8
RNA Sequencing of the Tumor Microenvironment in Precision Cancer Immunotherapy.
Trends Cancer. 2019 Mar;5(3):149-156. doi: 10.1016/j.trecan.2019.02.006. Epub 2019 Mar 8.
10
Profiles of immune infiltration in colorectal cancer and their clinical significant: A gene expression-based study.
Cancer Med. 2018 Sep;7(9):4496-4508. doi: 10.1002/cam4.1745. Epub 2018 Aug 16.

引用本文的文献

1
Towards a precision approach to anesthetic/analgesic immunomodulation in cancer.
Front Anesthesiol. 2024;3. doi: 10.3389/fanes.2024.1464004. Epub 2024 Dec 5.
3
6
Abnormal lipid metabolism and atherosclerosis: a new perspective on organelle function regulation and ferroptosis.
Front Immunol. 2025 Aug 14;16:1642984. doi: 10.3389/fimmu.2025.1642984. eCollection 2025.
8
Potential role of immune-related LncRNAs in prognosis of hepatocellular carcinoma: an integrative study.
Discov Oncol. 2025 Aug 31;16(1):1661. doi: 10.1007/s12672-025-03497-w.

本文引用的文献

1
Lineage-specific and single-cell chromatin accessibility charts human hematopoiesis and leukemia evolution.
Nat Genet. 2016 Oct;48(10):1193-203. doi: 10.1038/ng.3646. Epub 2016 Aug 15.
2
High-throughput genomic profiling of tumor-infiltrating leukocytes.
Curr Opin Immunol. 2016 Aug;41:77-84. doi: 10.1016/j.coi.2016.06.006. Epub 2016 Jun 30.
3
The prognostic landscape of genes and infiltrating immune cells across human cancers.
Nat Med. 2015 Aug;21(8):938-945. doi: 10.1038/nm.3909. Epub 2015 Jul 20.
4
Robust enumeration of cell subsets from tissue expression profiles.
Nat Methods. 2015 May;12(5):453-7. doi: 10.1038/nmeth.3337. Epub 2015 Mar 30.
5
PD-1 blockade induces responses by inhibiting adaptive immune resistance.
Nature. 2014 Nov 27;515(7528):568-71. doi: 10.1038/nature13954.
6
Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients.
Nature. 2014 Nov 27;515(7528):563-7. doi: 10.1038/nature14011.
7
Copy number loss of the interferon gene cluster in melanomas is linked to reduced T cell infiltrate and poor patient prognosis.
PLoS One. 2014 Oct 14;9(10):e109760. doi: 10.1371/journal.pone.0109760. eCollection 2014.
10
The continuum of cancer immunosurveillance: prognostic, predictive, and mechanistic signatures.
Immunity. 2013 Jul 25;39(1):11-26. doi: 10.1016/j.immuni.2013.07.008.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验