Suppr超能文献

T 细胞因子 7(TCF7)/TCF1 反馈独立于 Wnt/β-连环蛋白通路控制棕色脂肪细胞骨钙素信号传导。

T Cell Factor 7 (TCF7)/TCF1 Feedback Controls Osteocalcin Signaling in Brown Adipocytes Independent of the Wnt/β-Catenin Pathway.

机构信息

Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, People's Republic of China.

Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, People's Republic of China

出版信息

Mol Cell Biol. 2018 Mar 15;38(7). doi: 10.1128/MCB.00562-17. Print 2018 Apr 1.

Abstract

Osteocalcin has recently been shown to regulate energy homeostasis through multiple pathways. Adipose tissue is a main organ of energy metabolism, and administration of recombinant osteocalcin in mice promoted energy consumption, thus counteracting obesity and glucose intolerance. The regulation of osteocalcin in islet β cells has been well documented; however, it is unknown whether osteocalcin can also act on adipocytes and, if it does, how it functions. Here, we provide evidence to demonstrate a specific role for osteocalcin in brown adipocyte thermogenesis. Importantly, expression of the gene encoding a G protein-coupled receptor as an osteocalcin receptor was activated by brown fat-like differentiation. Moreover, expression could be further potentiated by osteocalcin. Meanwhile, overexpression and knockdown experiments validated the crucial role of in osteocalcin-mediated activation of thermogenic genes. For the first time, we identified and as putative targets for osteocalcin signaling. T cell factor 7 (TCF7) belongs to the TCF/LEF1 family of DNA binding factors crucial for the canonical WNT/β-catenin pathway; however, TCF7 modulates and promoter activation independent of β-catenin. Further studies revealed that the thermogenesis coactivator PRDM16 and the histone demethylase LSD1 might be required for TCF7 activity. Hence, our study described a TCF7-dependent feedback control of the osteocalcin-GPRC6A axis in brown adipocyte physiologies.

摘要

骨钙素最近被证明通过多种途径调节能量稳态。脂肪组织是能量代谢的主要器官,在小鼠中给予重组骨钙素可促进能量消耗,从而对抗肥胖和葡萄糖不耐受。骨钙素在胰岛β细胞中的调节作用已有充分的文献记载;然而,目前尚不清楚骨钙素是否也可以作用于脂肪细胞,如果可以,其作用机制如何。在这里,我们提供证据表明骨钙素在棕色脂肪细胞产热中具有特定作用。重要的是,编码 G 蛋白偶联受体作为骨钙素受体的 基因的表达通过棕色脂肪样分化被激活。此外,骨钙素可以进一步增强 的表达。同时,过表达和敲低实验验证了 在骨钙素介导的产热基因激活中的关键作用。我们首次鉴定了 和 是骨钙素信号的潜在靶点。T 细胞因子 7(TCF7)属于 TCF/LEF1 家族的 DNA 结合因子,对于经典的 WNT/β-连环蛋白途径至关重要;然而,TCF7 独立于 β-连环蛋白调节 和 启动子的激活。进一步的研究表明,产热共激活因子 PRDM16 和组蛋白去甲基化酶 LSD1 可能是 TCF7 活性所必需的。因此,我们的研究描述了棕色脂肪细胞生理学中骨钙素-GPRC6A 轴的 TCF7 依赖性反馈控制。

相似文献

4
TCF1 links GIPR signaling to the control of beta cell function and survival.
Nat Med. 2016 Jan;22(1):84-90. doi: 10.1038/nm.3997. Epub 2015 Dec 7.
5
Histone Demethylase LSD1 Promotes Adipocyte Differentiation through Repressing Wnt Signaling.
Cell Chem Biol. 2016 Oct 20;23(10):1228-1240. doi: 10.1016/j.chembiol.2016.08.010. Epub 2016 Sep 15.
6
Intrinsic properties of Tcf1 and Tcf4 splice variants determine cell-type-specific Wnt/β-catenin target gene expression.
Nucleic Acids Res. 2012 Oct;40(19):9455-69. doi: 10.1093/nar/gks690. Epub 2012 Aug 2.
7
Zfp703 Is a Wnt/β-Catenin Feedback Suppressor Targeting the β-Catenin/Tcf1 Complex.
Mol Cell Biol. 2016 May 31;36(12):1793-802. doi: 10.1128/MCB.01010-15. Print 2016 Jun 15.
8
Msx2 is required for TNF-α-induced canonical Wnt signaling in 3T3-L1 preadipocytes.
Biochem Biophys Res Commun. 2011 May 13;408(3):399-404. doi: 10.1016/j.bbrc.2011.04.029. Epub 2011 Apr 13.
9
Frizzled gene expression and negative regulation of canonical WNT-β-catenin signaling in mouse F9 teratocarcinoma cells.
Biochem Cell Biol. 2017 Apr;95(2):251-262. doi: 10.1139/bcb-2016-0150. Epub 2016 Sep 13.
10
Lysine-specific demethylase 1 promotes brown adipose tissue thermogenesis via repressing glucocorticoid activation.
Genes Dev. 2016 Aug 15;30(16):1822-36. doi: 10.1101/gad.285312.116. Epub 2016 Aug 26.

引用本文的文献

2
Bone-derived factors mediate crosstalk between skeletal and extra-skeletal organs.
Bone Res. 2025 Apr 30;13(1):49. doi: 10.1038/s41413-025-00424-1.
3
Crosstalk between Lipid Metabolism and Bone Homeostasis: Exploring Intricate Signaling Relationships.
Research (Wash D C). 2024 Aug 20;7:0447. doi: 10.34133/research.0447. eCollection 2024.
4
Maternal undernutrition results in transcript changes in male offspring that may promote resistance to high fat diet induced weight gain.
Front Endocrinol (Lausanne). 2024 Jan 17;14:1332959. doi: 10.3389/fendo.2023.1332959. eCollection 2023.
5
LSD1 for the Targeted Regulation of Adipose Tissue.
Curr Issues Mol Biol. 2022 Dec 27;45(1):151-163. doi: 10.3390/cimb45010012.
6
TCF7/SNAI2/miR-4306 feedback loop promotes hypertrophy of ligamentum flavum.
J Transl Med. 2022 Oct 12;20(1):468. doi: 10.1186/s12967-022-03677-0.
7
Immunometabolism - The Role of Branched-Chain Amino Acids.
Front Immunol. 2022 Jun 23;13:886822. doi: 10.3389/fimmu.2022.886822. eCollection 2022.
8
Differential lncRNA/mRNA Expression Profiling and Functional Network Analyses in Bmp2 Deletion of Mouse Dental Papilla Cells.
Front Genet. 2021 Dec 22;12:702540. doi: 10.3389/fgene.2021.702540. eCollection 2021.
9
Endocrine role of bone in the regulation of energy metabolism.
Bone Res. 2021 May 20;9(1):25. doi: 10.1038/s41413-021-00142-4.
10
Obesity and Bone Health: A Complex Link.
Front Cell Dev Biol. 2020 Dec 21;8:600181. doi: 10.3389/fcell.2020.600181. eCollection 2020.

本文引用的文献

1
CRISPR/Cas9 targeting of GPRC6A suppresses prostate cancer tumorigenesis in a human xenograft model.
J Exp Clin Cancer Res. 2017 Jun 28;36(1):90. doi: 10.1186/s13046-017-0561-x.
2
Wnt/β-Catenin Signaling, Disease, and Emerging Therapeutic Modalities.
Cell. 2017 Jun 1;169(6):985-999. doi: 10.1016/j.cell.2017.05.016.
3
The Influence of the Type of Continuous Exercise Stress Applied during Growth Periods on Bone Metabolism and Osteogenesis.
J Bone Metab. 2016 Aug;23(3):157-64. doi: 10.11005/jbm.2016.23.3.157. Epub 2016 Aug 31.
4
Lysine-specific demethylase 1 promotes brown adipose tissue thermogenesis via repressing glucocorticoid activation.
Genes Dev. 2016 Aug 15;30(16):1822-36. doi: 10.1101/gad.285312.116. Epub 2016 Aug 26.
5
Osteocalcin Signaling in Myofibers Is Necessary and Sufficient for Optimum Adaptation to Exercise.
Cell Metab. 2016 Jun 14;23(6):1078-1092. doi: 10.1016/j.cmet.2016.05.004.
6
BMI and BMD: The Potential Interplay between Obesity and Bone Fragility.
Int J Environ Res Public Health. 2016 May 28;13(6):544. doi: 10.3390/ijerph13060544.
7
Evidence for Osteocalcin Binding and Activation of GPRC6A in β-Cells.
Endocrinology. 2016 May;157(5):1866-80. doi: 10.1210/en.2015-2010. Epub 2016 Mar 23.
8
Osteocalcin improves nonalcoholic fatty liver disease in mice through activation of Nrf2 and inhibition of JNK.
Endocrine. 2016 Sep;53(3):701-9. doi: 10.1007/s12020-016-0926-5. Epub 2016 Mar 19.
9
Obesity and Cardiovascular Disease: a Risk Factor or a Risk Marker?
Curr Atheroscler Rep. 2016 May;18(5):21. doi: 10.1007/s11883-016-0575-4.
10
Bone and Muscle Endocrine Functions: Unexpected Paradigms of Inter-organ Communication.
Cell. 2016 Mar 10;164(6):1248-1256. doi: 10.1016/j.cell.2016.02.043.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验