Suppr超能文献

肿瘤杀伤 T 细胞重编程:改善代谢适应性以增强癌症免疫治疗效果。

Antitumor T-cell Reconditioning: Improving Metabolic Fitness for Optimal Cancer Immunotherapy.

机构信息

Tumor Microenvironment Center, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania.

Department of Immunology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania.

出版信息

Clin Cancer Res. 2018 Jun 1;24(11):2473-2481. doi: 10.1158/1078-0432.CCR-17-0894. Epub 2018 Jan 31.

Abstract

With the rapid rise of immunotherapy for cancer treatment, attention has focused on gaining a better understanding of T-cell biology in the tumor microenvironment. Elucidating the factors underlying changes in their function will allow for the development of new therapeutic strategies that could expand the patient population benefiting from immunotherapy, as well as circumvent therapy resistance. Cancers go beyond avoiding immune recognition and inducing T-cell dysfunction through coinhibitory molecules. Recent work has demonstrated that the tumor microenvironment elicits metabolic changes in T cells that dampen their ability to respond and that manipulating these metabolic changes can strengthen an antitumor immune response. Here we review the metabolic status of various types of T cells, the energetic state of the tumor microenvironment, and proposed modalities for improvement of immunotherapy through metabolic remodeling. .

摘要

随着癌症治疗中免疫疗法的迅速兴起,人们越来越关注在肿瘤微环境中更好地了解 T 细胞生物学。阐明其功能变化的原因将有助于开发新的治疗策略,从而扩大受益于免疫疗法的患者群体,并避免治疗耐药性。癌症不仅通过共抑制分子来避免免疫识别和诱导 T 细胞功能障碍。最近的工作表明,肿瘤微环境会引起 T 细胞的代谢变化,从而削弱其反应能力,而操纵这些代谢变化可以增强抗肿瘤免疫反应。在这里,我们综述了各种类型的 T 细胞的代谢状态、肿瘤微环境的能量状态,以及通过代谢重塑来改善免疫疗法的可能方式。

相似文献

1
Antitumor T-cell Reconditioning: Improving Metabolic Fitness for Optimal Cancer Immunotherapy.
Clin Cancer Res. 2018 Jun 1;24(11):2473-2481. doi: 10.1158/1078-0432.CCR-17-0894. Epub 2018 Jan 31.
2
Metabolic Barriers to T Cell Function in Tumors.
J Immunol. 2018 Jan 15;200(2):400-407. doi: 10.4049/jimmunol.1701041.
3
Metabolic reprograming of anti-tumor immunity.
Curr Opin Immunol. 2017 Jun;46:14-22. doi: 10.1016/j.coi.2017.03.011. Epub 2017 Apr 13.
4
Tissue-resident memory-like T cells in tumor immunity: Clinical implications.
Semin Immunol. 2020 Jun;49:101415. doi: 10.1016/j.smim.2020.101415. Epub 2020 Sep 30.
6
Targeting T cell metabolism for immunotherapy.
J Leukoc Biol. 2021 Dec;110(6):1081-1090. doi: 10.1002/JLB.5MR0921-011R. Epub 2021 Nov 15.
7
Regulatory T cells in cancer; can they be controlled?
Immunotherapy. 2015;7(8):843-6. doi: 10.2217/imt.15.52. Epub 2015 Aug 28.
8
The HIF-1α hypoxia response in tumor-infiltrating T lymphocytes induces functional CD137 (4-1BB) for immunotherapy.
Cancer Discov. 2012 Jul;2(7):608-23. doi: 10.1158/2159-8290.CD-11-0314. Epub 2012 Jun 19.
9
Fundamentals of T Cell Metabolism and Strategies to Enhance Cancer Immunotherapy.
Front Immunol. 2021 Mar 18;12:645242. doi: 10.3389/fimmu.2021.645242. eCollection 2021.
10
Editorial: Tissue Resident Memory T Cells.
Front Immunol. 2019 May 27;10:1018. doi: 10.3389/fimmu.2019.01018. eCollection 2019.

引用本文的文献

2
Lactylation and Central Nervous System Diseases.
Brain Sci. 2025 Mar 11;15(3):294. doi: 10.3390/brainsci15030294.
4
A functional single-cell metabolic survey identifies Elovl1 as a target to enhance CD8 T cell fitness in solid tumours.
Nat Metab. 2025 Mar;7(3):508-530. doi: 10.1038/s42255-025-01233-w. Epub 2025 Mar 10.
5
Fuel for thought: targeting metabolism in lung cancer.
Transl Lung Cancer Res. 2024 Dec 31;13(12):3692-3717. doi: 10.21037/tlcr-24-662. Epub 2024 Dec 24.
6
From metabolic byproduct to immune modulator: the role of lactate in tumor immune escape.
Front Immunol. 2024 Nov 25;15:1492050. doi: 10.3389/fimmu.2024.1492050. eCollection 2024.
7
Impact of mitochondrial dysfunction on the antitumor effects of immune cells.
Front Immunol. 2024 Oct 11;15:1428596. doi: 10.3389/fimmu.2024.1428596. eCollection 2024.
8
Hypoxia as a Target for Combination with Transarterial Chemoembolization in Hepatocellular Carcinoma.
Pharmaceuticals (Basel). 2024 Aug 11;17(8):1057. doi: 10.3390/ph17081057.
10
Modulating ferroptosis sensitivity: environmental and cellular targets within the tumor microenvironment.
J Exp Clin Cancer Res. 2024 Jan 13;43(1):19. doi: 10.1186/s13046-023-02925-5.

本文引用的文献

2
Metabolic reprograming of anti-tumor immunity.
Curr Opin Immunol. 2017 Jun;46:14-22. doi: 10.1016/j.coi.2017.03.011. Epub 2017 Apr 13.
4
Regulatory T cells in cancer immunotherapy.
Cell Res. 2017 Jan;27(1):109-118. doi: 10.1038/cr.2016.151. Epub 2016 Dec 20.
5
Efficacy of PD-1 Blockade Is Potentiated by Metformin-Induced Reduction of Tumor Hypoxia.
Cancer Immunol Res. 2017 Jan;5(1):9-16. doi: 10.1158/2326-6066.CIR-16-0103. Epub 2016 Dec 9.
6
S-2-hydroxyglutarate regulates CD8 T-lymphocyte fate.
Nature. 2016 Dec 8;540(7632):236-241. doi: 10.1038/nature20165. Epub 2016 Oct 26.
7
L-Arginine Modulates T Cell Metabolism and Enhances Survival and Anti-tumor Activity.
Cell. 2016 Oct 20;167(3):829-842.e13. doi: 10.1016/j.cell.2016.09.031. Epub 2016 Oct 13.
8
Nivolumab for Recurrent Squamous-Cell Carcinoma of the Head and Neck.
N Engl J Med. 2016 Nov 10;375(19):1856-1867. doi: 10.1056/NEJMoa1602252. Epub 2016 Oct 8.
9
Aerobic glycolysis promotes T helper 1 cell differentiation through an epigenetic mechanism.
Science. 2016 Oct 28;354(6311):481-484. doi: 10.1126/science.aaf6284. Epub 2016 Sep 29.
10
LDHA-Associated Lactic Acid Production Blunts Tumor Immunosurveillance by T and NK Cells.
Cell Metab. 2016 Nov 8;24(5):657-671. doi: 10.1016/j.cmet.2016.08.011. Epub 2016 Sep 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验