Suppr超能文献

用红细胞膜包覆纳米海绵广谱中和形成孔的毒素。

Broad-Spectrum Neutralization of Pore-Forming Toxins with Human Erythrocyte Membrane-Coated Nanosponges.

机构信息

Department of NanoEngineering and Moores Cancer Center, University of California, San Diego, La Jolla, CA, 92093, USA.

The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.

出版信息

Adv Healthc Mater. 2018 Jul;7(13):e1701366. doi: 10.1002/adhm.201701366. Epub 2018 Feb 13.

Abstract

Neutralization of bacterial toxins has become a compelling approach to treating bacterial infections as it may pose less selective pressure for the development of bacterial resistance. Currently, the majority of toxin neutralization platforms act by targeting the molecular structure of the toxin, which requires toxin identification and customized design for different diseases. Therefore, their development has been challenged by the enormous number and complexity of bacterial toxins. Herein, biomimetic toxin nanosponges are formulated by coating membranes of human red blood cells (hRBCs) onto polymeric nanoparticles, which act as a toxin decoy to absorb and neutralize a broad-spectrum of hemolytic toxins regardless of their molecular structure. When tested with model pore-forming toxins, including melittin, α-hemolysin of methicillin-resistant Staphylococcus aureus, listeriolysin O of Listeria monocytogenes, and streptolysin O of Group A Streptococcus, the hRBC nanosponges are able to completely inhibit toxin-induced hemolysis in a concentration-dependent manner. In addition, the nanosponge-detained toxins show no cytotoxicity when tested on human umbilical vein endothelial cells and no lethality when injected into mice, which together indicate effective toxin neutralization. Overall, these results demonstrate the broad applicability and high effectiveness of the hRBC nanosponges as a novel antivirulence platform against hemolytic toxins from various strains of bacteria.

摘要

细菌毒素的中和已成为治疗细菌感染的一种强制性方法,因为它可能对细菌耐药性的发展产生较小的选择性压力。目前,大多数毒素中和平台通过靶向毒素的分子结构起作用,这需要对不同疾病进行毒素鉴定和定制设计。因此,由于细菌毒素数量巨大且结构复杂,它们的开发受到了挑战。在此,通过将人红细胞(hRBC)的膜涂覆到聚合物纳米颗粒上,形成仿生毒素纳米海绵,这些纳米海绵作为毒素诱饵,能够吸收和中和广谱的溶血毒素,而不管其分子结构如何。当用模式孔形成毒素(包括蜂毒素、耐甲氧西林金黄色葡萄球菌的α-溶血素、李斯特菌溶血素 O 和 A 组链球菌的链球菌溶血素 O)进行测试时,hRBC 纳米海绵能够以浓度依赖的方式完全抑制毒素诱导的溶血。此外,在人脐静脉内皮细胞上测试时,被纳米海绵截留的毒素没有细胞毒性,在注射到小鼠中时也没有致死性,这共同表明了有效的毒素中和作用。总体而言,这些结果表明 hRBC 纳米海绵作为一种新型抗溶血毒素的抗病毒平台,可广泛应用于来自不同菌株的细菌的溶血毒素。

相似文献

1
Broad-Spectrum Neutralization of Pore-Forming Toxins with Human Erythrocyte Membrane-Coated Nanosponges.
Adv Healthc Mater. 2018 Jul;7(13):e1701366. doi: 10.1002/adhm.201701366. Epub 2018 Feb 13.
2
Disarming Pore-Forming Toxins with Biomimetic Nanosponges in Intraocular Infections.
mSphere. 2019 May 15;4(3):e00262-19. doi: 10.1128/mSphere.00262-19.
3
A biomimetic nanosponge that absorbs pore-forming toxins.
Nat Nanotechnol. 2013 May;8(5):336-40. doi: 10.1038/nnano.2013.54. Epub 2013 Apr 14.
4
Biomimetic Nanosponges Suppress In Vivo Lethality Induced by the Whole Secreted Proteins of Pathogenic Bacteria.
Small. 2019 Feb;15(6):e1804994. doi: 10.1002/smll.201804994. Epub 2019 Jan 13.
5
Broad-spectrum and powerful neutralization of bacterial toxins by erythroliposomes with the help of macrophage uptake and degradation.
Acta Pharm Sin B. 2022 Nov;12(11):4235-4248. doi: 10.1016/j.apsb.2022.03.015. Epub 2022 Mar 29.
8
Injectable Nanosponge-Loaded Pluronic F127 Hydrogel for Pore-Forming Toxin Neutralization.
Int J Nanomedicine. 2021 Jun 23;16:4239-4250. doi: 10.2147/IJN.S315062. eCollection 2021.
9
Production of listeriolysin by beta-hemolytic strains of Listeria monocytogenes.
Infect Immun. 1986 Jan;51(1):314-9. doi: 10.1128/iai.51.1.314-319.1986.
10
Cluster-forming property correlated with hemolytic activity by staphylococcal γ-hemolysin transmembrane pores.
FEBS Lett. 2011 Nov 4;585(21):3452-6. doi: 10.1016/j.febslet.2011.09.041. Epub 2011 Oct 12.

引用本文的文献

2
Nanodrug Delivery Systems for Direct Clearance or Neutralization of LPS.
Int J Nanomedicine. 2025 Jul 3;20:8653-8673. doi: 10.2147/IJN.S510037. eCollection 2025.
3
Recent advances in biomimetic nanodelivery systems for cancer Immunotherapy.
Mater Today Bio. 2025 Apr 5;32:101726. doi: 10.1016/j.mtbio.2025.101726. eCollection 2025 Jun.
4
"Live" Nanomaterials Process Biomimetic Recognition and Assembly In Vivo.
Small Sci. 2023 Oct 10;3(11):2300032. doi: 10.1002/smsc.202300032. eCollection 2023 Nov.
5
Red blood cells-derived components as biomimetic functional materials: Matching versatile delivery strategies based on structure and function.
Bioact Mater. 2025 Feb 13;47:481-501. doi: 10.1016/j.bioactmat.2025.01.021. eCollection 2025 May.
6
Comprehensive insights into glioblastoma multiforme: drug delivery challenges and multimodal treatment strategies.
Ther Deliv. 2025 Jan;16(1):87-115. doi: 10.1080/20415990.2024.2415281. Epub 2024 Oct 24.
7
Research Advances of Cellular Nanoparticles as Multiplex Countermeasures.
ACS Nano. 2024 Nov 5;18(44):30211-30223. doi: 10.1021/acsnano.4c09830. Epub 2024 Oct 23.
8
The intricate pathogenicity of Group A : A comprehensive update.
Virulence. 2024 Dec;15(1):2412745. doi: 10.1080/21505594.2024.2412745. Epub 2024 Nov 5.
9
Forssman and the staphylococcal hemolysins.
APMIS. 2025 Jan;133(1):e13459. doi: 10.1111/apm.13459. Epub 2024 Aug 27.
10
Red Blood Cell Membrane-Coated Nanoparticles Enable Incompatible Blood Transfusions.
Adv Sci (Weinh). 2024 Aug;11(29):e2310230. doi: 10.1002/advs.202310230. Epub 2024 Jun 5.

本文引用的文献

1
Self-Assembled Colloidal Gel Using Cell Membrane-Coated Nanosponges as Building Blocks.
ACS Nano. 2017 Dec 26;11(12):11923-11930. doi: 10.1021/acsnano.7b06968. Epub 2017 Nov 10.
2
In Situ Capture of Bacterial Toxins for Antivirulence Vaccination.
Adv Mater. 2017 Sep;29(33). doi: 10.1002/adma.201701644. Epub 2017 Jun 28.
3
4
Pore-forming toxins: ancient, but never really out of fashion.
Nat Rev Microbiol. 2016 Feb;14(2):77-92. doi: 10.1038/nrmicro.2015.3. Epub 2015 Dec 7.
5
Streptolysin O Rapidly Impairs Neutrophil Oxidative Burst and Antibacterial Responses to Group A Streptococcus.
Front Immunol. 2015 Nov 16;6:581. doi: 10.3389/fimmu.2015.00581. eCollection 2015.
7
Synthesis of Nanogels via Cell Membrane-Templated Polymerization.
Small. 2015 Sep 9;11(34):4309-13. doi: 10.1002/smll.201500987. Epub 2015 Jun 5.
8
Hydrogel Retaining Toxin-Absorbing Nanosponges for Local Treatment of Methicillin-Resistant Staphylococcus aureus Infection.
Adv Mater. 2015 Jun 10;27(22):3437-43. doi: 10.1002/adma.201501071. Epub 2015 Apr 30.
10
Core-shell supramolecular gelatin nanoparticles for adaptive and "on-demand" antibiotic delivery.
ACS Nano. 2014 May 27;8(5):4975-83. doi: 10.1021/nn501040h. Epub 2014 Apr 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验