Suppr超能文献

线粒体维持中的自噬和质量控制机制。

Mitophagy and Quality Control Mechanisms in Mitochondrial Maintenance.

机构信息

Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.

CNRS, IBGC, UMR5095, 1 rue Camille Saint-Saëns, F-33000 Bordeaux, France; Université de Bordeaux, IBGC, UMR5095, 1 rue Camille Saint-Saëns, F-33000 Bordeaux, France.

出版信息

Curr Biol. 2018 Feb 19;28(4):R170-R185. doi: 10.1016/j.cub.2018.01.004.

Abstract

The maintenance of a healthy and functional mitochondrial network is critical during development as well as throughout life in the response to physiological adaptations and stress conditions. Owing to their role in energy production, mitochondria are exposed to high levels of reactive oxygen species, making them particularly vulnerable to mitochondrial DNA mutations and protein misfolding. Given that mitochondria are formed from proteins encoded by both nuclear and mitochondrial genomes, an additional layer of complexity is inherent in the coordination of protein synthesis and the mitochondrial import of nuclear-encoded proteins. For these reasons, mitochondria have evolved multiple systems of quality control to ensure that the requisite number of functional mitochondria are present to meet the demands of the cell. These pathways work to eliminate damaged mitochondrial proteins or parts of the mitochondrial network by mitophagy and renew components by adding protein and lipids through biogenesis, collectively resulting in mitochondrial turnover. Mitochondrial quality control mechanisms are multi-tiered, operating at the protein, organelle and cell levels. Herein, we discuss mitophagy in different physiological contexts and then relate it to other quality control pathways, including the unfolded protein response, shedding of vesicles, proteolysis, and degradation by the ubiquitin-proteasome system. Understanding how these pathways contribute to the maintenance of mitochondrial homeostasis could provide insights into the development of targeted treatments when these systems fail in disease.

摘要

维持健康和功能正常的线粒体网络对于发育以及生命过程中的生理适应和应激条件至关重要。由于线粒体在能量产生中发挥作用,因此它们容易受到高水平的活性氧的影响,使其特别容易受到线粒体 DNA 突变和蛋白质错误折叠的影响。鉴于线粒体是由核基因组和线粒体基因组编码的蛋白质组成的,因此协调蛋白质合成和核编码蛋白的线粒体导入具有内在的额外复杂性。出于这些原因,线粒体已经进化出多种质量控制系统,以确保存在必需数量的功能线粒体来满足细胞的需求。这些途径通过自噬作用消除受损的线粒体蛋白质或线粒体网络的部分,并通过生物发生添加蛋白质和脂质来更新组件,共同导致线粒体周转率。线粒体质量控制机制是多层次的,在蛋白质、细胞器和细胞水平上运作。本文中,我们将讨论不同生理环境下的自噬作用,然后将其与其他质量控制途径联系起来,包括未折叠蛋白反应、囊泡脱落、蛋白酶解和泛素-蛋白酶体系统降解。了解这些途径如何有助于维持线粒体动态平衡,可以为这些系统在疾病中失效时针对特定疾病的治疗方法的开发提供思路。

相似文献

1
Mitophagy and Quality Control Mechanisms in Mitochondrial Maintenance.
Curr Biol. 2018 Feb 19;28(4):R170-R185. doi: 10.1016/j.cub.2018.01.004.
2
Mitochondrial Protein Quality Control Mechanisms.
Genes (Basel). 2020 May 18;11(5):563. doi: 10.3390/genes11050563.
3
Ubiquitination of Intramitochondrial Proteins: Implications for Metabolic Adaptability.
Biomolecules. 2020 Nov 16;10(11):1559. doi: 10.3390/biom10111559.
4
N-degron-mediated degradation and regulation of mitochondrial PINK1 kinase.
Curr Genet. 2020 Aug;66(4):693-701. doi: 10.1007/s00294-020-01062-2. Epub 2020 Mar 10.
5
Sensing, signaling and surviving mitochondrial stress.
Cell Mol Life Sci. 2021 Aug;78(16):5925-5951. doi: 10.1007/s00018-021-03887-7. Epub 2021 Jul 6.
6
Inhibition of proteasome reveals basal mitochondrial ubiquitination.
J Proteomics. 2020 Oct 30;229:103949. doi: 10.1016/j.jprot.2020.103949. Epub 2020 Aug 31.
8
Mitochondrial quality control and communications with the nucleus are important in maintaining mitochondrial function and cell health.
Biochim Biophys Acta. 2014 Apr;1840(4):1254-65. doi: 10.1016/j.bbagen.2013.10.041. Epub 2013 Nov 6.
9
Mitochondrial quality control in the myocardium: cooperation between protein degradation and mitophagy.
J Mol Cell Cardiol. 2014 Oct;75:122-30. doi: 10.1016/j.yjmcc.2014.07.013. Epub 2014 Jul 30.
10
Mitochondrial quality control pathways sense mitochondrial protein import.
Trends Endocrinol Metab. 2024 Apr;35(4):308-320. doi: 10.1016/j.tem.2023.11.004. Epub 2023 Dec 15.

引用本文的文献

4
Antioxidant Effects of Exogenous Mitochondria: The Role of Outer Membrane Integrity.
Antioxidants (Basel). 2025 Aug 2;14(8):951. doi: 10.3390/antiox14080951.
8
hijacks mitophagy and lysosomal function to persist in endothelial cells.
Front Cell Infect Microbiol. 2025 Aug 8;15:1613366. doi: 10.3389/fcimb.2025.1613366. eCollection 2025.
10
Dual-key cooperatively activated DNA regulator for controlling mitochondria-lysosome interactions.
Nat Commun. 2025 Aug 22;16(1):7811. doi: 10.1038/s41467-025-63040-x.

本文引用的文献

1
Mitochondrial fission facilitates the selective mitophagy of protein aggregates.
J Cell Biol. 2017 Oct 2;216(10):3231-3247. doi: 10.1083/jcb.201612106. Epub 2017 Sep 11.
2
AMPK: Mechanisms of Cellular Energy Sensing and Restoration of Metabolic Balance.
Mol Cell. 2017 Jun 15;66(6):789-800. doi: 10.1016/j.molcel.2017.05.032.
3
Multi-omics analysis identifies ATF4 as a key regulator of the mitochondrial stress response in mammals.
J Cell Biol. 2017 Jul 3;216(7):2027-2045. doi: 10.1083/jcb.201702058. Epub 2017 May 31.
4
Proteasomal and Autophagic Degradation Systems.
Annu Rev Biochem. 2017 Jun 20;86:193-224. doi: 10.1146/annurev-biochem-061516-044908. Epub 2017 May 1.
5
Parkin-phosphoubiquitin complex reveals cryptic ubiquitin-binding site required for RBR ligase activity.
Nat Struct Mol Biol. 2017 May;24(5):475-483. doi: 10.1038/nsmb.3400. Epub 2017 Apr 17.
6
Parkin deficiency accelerates consequences of mitochondrial DNA deletions and Parkinsonism.
Neurobiol Dis. 2017 Apr;100:30-38. doi: 10.1016/j.nbd.2016.12.024. Epub 2016 Dec 29.
7
Prohibitin 2 Is an Inner Mitochondrial Membrane Mitophagy Receptor.
Cell. 2017 Jan 12;168(1-2):224-238.e10. doi: 10.1016/j.cell.2016.11.042. Epub 2016 Dec 22.
8
Mitochondrial division occurs concurrently with autophagosome formation but independently of Drp1 during mitophagy.
J Cell Biol. 2016 Dec 5;215(5):649-665. doi: 10.1083/jcb.201605093. Epub 2016 Nov 30.
9
Prion-Like Polymerization in Immunity and Inflammation.
Cold Spring Harb Perspect Biol. 2017 Apr 3;9(4):a023580. doi: 10.1101/cshperspect.a023580.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验