Suppr超能文献

一种三维肠道组织模型支持艰难梭菌的萌发、定殖、毒素产生及上皮损伤。

A 3D intestinal tissue model supports Clostridioides difficile germination, colonization, toxin production and epithelial damage.

作者信息

Shaban Lamyaa, Chen Ying, Fasciano Alyssa C, Lin Yinan, Kaplan David L, Kumamoto Carol A, Mecsas Joan

机构信息

Graduate Program in Molecular Microbiology, Sackler School of Graduate Biomedical Sciences, 136 Harrison Ave, Boston, MA 02111, USA.

Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA.

出版信息

Anaerobe. 2018 Apr;50:85-92. doi: 10.1016/j.anaerobe.2018.02.006. Epub 2018 Feb 17.

Abstract

Endospore-forming Clostridioides difficile is a causative agent of antibiotic-induced diarrhea, a major nosocomial infection. Studies of its interactions with mammalian tissues have been hampered by the fact that C. difficile requires anaerobic conditions to survive after spore germination. We recently developed a bioengineered 3D human intestinal tissue model and found that low O conditions are produced in the lumen of these tissues. Here, we compared the ability of C. difficile spores to germinate, produce toxin and cause tissue damage in our bioengineered 3D tissue model versus in a 2D transwell model in which human cells form a polarized monolayer. 3D tissue models or 2D polarized monolayers on transwell filters were challenged with the non-toxin producing C. difficile CCUG 37787 serotype X (ATCC 43603) and the toxin producing UK1 C. difficile spores in the presence of the germinant, taurocholate. Spores germinated in both the 3D tissue model as well as the 2D transwell system, however toxin activity was significantly higher in the 3D tissue models compared to the 2D transwells. Moreover, the epithelium damage in the 3D tissue model was significantly more severe than in 2D transwells and damage correlated significantly with the level of toxin activity detected but not with the amount of germinated spores. Combined, these results show that the bioengineered 3D tissue model provides a powerful system with which to study early events leading to toxin production and tissue damage of C. difficile with mammalian cells under anaerobic conditions. Furthermore, these systems may be useful for examining the effects of microbiota, novel drugs and other potential therapeutics directed towards C. difficile infections.

摘要

形成芽孢的艰难梭菌是抗生素诱导性腹泻的病原体,这是一种主要的医院感染。由于艰难梭菌在孢子萌发后需要厌氧条件才能存活,因此其与哺乳动物组织相互作用的研究受到了阻碍。我们最近开发了一种生物工程三维人体肠道组织模型,并发现这些组织的内腔中会产生低氧条件。在这里,我们比较了艰难梭菌孢子在我们的生物工程三维组织模型中与在二维Transwell模型(其中人类细胞形成极化单层)中萌发、产生毒素和导致组织损伤的能力。在存在萌发剂牛磺胆酸盐的情况下,用不产生毒素的艰难梭菌CCUG 37787血清型X(ATCC 43603)和产生毒素的UK1艰难梭菌孢子对三维组织模型或Transwell滤器上的二维极化单层进行攻击。孢子在三维组织模型和二维Transwell系统中均能萌发,然而,与二维Transwell相比,三维组织模型中的毒素活性显著更高。此外,三维组织模型中的上皮损伤明显比二维Transwell更严重,且损伤与检测到的毒素活性水平显著相关,但与萌发孢子的数量无关。综合来看,这些结果表明,生物工程三维组织模型提供了一个强大的系统,可用于研究在厌氧条件下导致艰难梭菌与哺乳动物细胞产生毒素和组织损伤的早期事件。此外,这些系统可能有助于研究微生物群、新型药物和其他针对艰难梭菌感染的潜在治疗方法的效果。

相似文献

3
Single-spore germination analyses reveal that calcium released during germination functions in a feedforward loop.
mSphere. 2023 Aug 24;8(4):e0000523. doi: 10.1128/msphere.00005-23. Epub 2023 Jun 20.
4
Fate of ingested Clostridium difficile spores in mice.
PLoS One. 2013 Aug 30;8(8):e72620. doi: 10.1371/journal.pone.0072620. eCollection 2013.
5
The role of toxins in Clostridium difficile infection.
FEMS Microbiol Rev. 2017 Nov 1;41(6):723-750. doi: 10.1093/femsre/fux048.
6
Human intestinal enteroids as a model of -induced enteritis.
Am J Physiol Gastrointest Liver Physiol. 2020 May 1;318(5):G870-G888. doi: 10.1152/ajpgi.00045.2020. Epub 2020 Mar 30.
7
Intestinal calcium and bile salts facilitate germination of Clostridium difficile spores.
PLoS Pathog. 2017 Jul 13;13(7):e1006443. doi: 10.1371/journal.ppat.1006443. eCollection 2017 Jul.
8
Oritavancin does not induce Clostridium difficile germination and toxin production in hamsters or a human gut model.
J Antimicrob Chemother. 2012 Dec;67(12):2919-26. doi: 10.1093/jac/dks309. Epub 2012 Aug 16.
9
Biology: Sporulation, Germination, and Corresponding Therapies for Infection.
Front Cell Infect Microbiol. 2018 Feb 8;8:29. doi: 10.3389/fcimb.2018.00029. eCollection 2018.
10
The microbial metabolite urolithin A reduces toxin expression and toxin-induced epithelial damage.
mSystems. 2024 Feb 20;9(2):e0125523. doi: 10.1128/msystems.01255-23. Epub 2024 Jan 9.

引用本文的文献

1
Biofabricated 3D Intestinal Models as an Alternative to Animal-Based Approaches for Drug Toxicity Assays.
Tissue Eng Regen Med. 2025 Feb;22(2):181-194. doi: 10.1007/s13770-024-00694-6. Epub 2025 Jan 17.
4
The Relationship between Complements and Age-Related Macular Degeneration and Its Pathogenesis.
J Ophthalmol. 2024 Jan 2;2024:6416773. doi: 10.1155/2024/6416773. eCollection 2024.
5
Investigation of metabolic crosstalk between host and pathogenic multiomics approaches.
Front Bioeng Biotechnol. 2022 Sep 2;10:971739. doi: 10.3389/fbioe.2022.971739. eCollection 2022.
6
Bioengineered 3D Tissue Model of Intestine Epithelium with Oxygen Gradients to Sustain Human Gut Microbiome.
Adv Healthc Mater. 2022 Aug;11(16):e2200447. doi: 10.1002/adhm.202200447. Epub 2022 Jun 19.
7
Soluble Non-Starch Polysaccharides From Plantain ( L.) Diminish Epithelial Impact of .
Front Pharmacol. 2021 Dec 10;12:766293. doi: 10.3389/fphar.2021.766293. eCollection 2021.
8
Gut-microbiota-on-a-chip: an enabling field for physiological research.
Microphysiol Syst. 2018 Oct;2. doi: 10.21037/mps.2018.09.01. Epub 2018 Oct 16.
9
Bi-layered Tubular Microfiber Scaffolds as Functional Templates for Engineering Human Intestinal Smooth Muscle Tissue.
Adv Funct Mater. 2020 Apr 27;30(17). doi: 10.1002/adfm.202000543. Epub 2020 Feb 27.
10
Advances in Engineering Human Tissue Models.
Front Bioeng Biotechnol. 2021 Jan 28;8:620962. doi: 10.3389/fbioe.2020.620962. eCollection 2020.

本文引用的文献

1
Clostridium difficile Toxins TcdA and TcdB Cause Colonic Tissue Damage by Distinct Mechanisms.
Infect Immun. 2016 Sep 19;84(10):2871-7. doi: 10.1128/IAI.00583-16. Print 2016 Oct.
3
A whole new ball game: Stem cell-derived epithelia in the study of host-microbe interactions.
Anaerobe. 2016 Feb;37:25-8. doi: 10.1016/j.anaerobe.2015.10.016. Epub 2015 Nov 5.
4
Robust bioengineered 3D functional human intestinal epithelium.
Sci Rep. 2015 Sep 16;5:13708. doi: 10.1038/srep13708.
5
6
Clostridium difficile Infection.
N Engl J Med. 2015 Jul 16;373(3):287-8. doi: 10.1056/NEJMc1506004.
7
Cloning and variation of ground state intestinal stem cells.
Nature. 2015 Jun 11;522(7555):173-8. doi: 10.1038/nature14484. Epub 2015 Jun 3.
8
Burden of Clostridium difficile infection in the United States.
N Engl J Med. 2015 Feb 26;372(9):825-34. doi: 10.1056/NEJMoa1408913.
9
Human Clostridium difficile infection: altered mucus production and composition.
Am J Physiol Gastrointest Liver Physiol. 2015 Mar 15;308(6):G510-24. doi: 10.1152/ajpgi.00091.2014. Epub 2014 Dec 31.
10
Human Clostridium difficile infection: inhibition of NHE3 and microbiota profile.
Am J Physiol Gastrointest Liver Physiol. 2015 Mar 15;308(6):G497-509. doi: 10.1152/ajpgi.00090.2014. Epub 2014 Dec 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验